

Unit 4: The Spin-Statistics Theorem

The Spin-Statistics Theorem

- Anti-commutation relations (fermions) may be used only on half-integer spin particles.
- Commutation relations (bosons) may be used only on integer spin particles.
- We saw a hint of this last time, because we got a trivial L from spin-0 anti-commutators.
 - But not yet clear why this is the case, or if the problem can be fixed.
- The rest of this section is to prove the theorem for spin = 0.

Outline

- 1. Prove that φ^+ and φ^- yield local, Lorentz-Invariant interactions.
- 2. Require the transition amplitude to be constant in different frames.
- Show that this requirement is impossible (for spin 0) for anti-commutators, and for any field operator other than φ.

Local, Lorentz-Invariant Interactions

Let's consider the Hamiltonian for free, non-interacting spin-0 fields, with $\varepsilon_0 = \Omega_0$. $H_0 = \int \widetilde{dk} \omega a^{\dagger}(\vec{k}) a(\vec{k})$ • Now let's define ϕ^+ , $\phi^ \phi^+(x,0) = \int \widetilde{dk} e^{ik \cdot x} a(k)$ $\phi^{-}(x,0) = \int \widetilde{dk} e^{-ik \cdot x} a^{\dagger}(k)$

Local, Lorentz-Invariant Interactions

Time-evolving these:

$$\phi^{+}(x,t) = \int \widetilde{dk} e^{ikx} a(k)$$
$$\phi^{-}(x,t) = \int \widetilde{dk} e^{-ikx} a^{\dagger}(k)$$

- Notice two things:
 - \square The sum of these is just ϕ
 - φ⁺ and φ⁻ are Lorentz scalars, ie when sandwiched between the unitary Lorentz matrices, their argument is Lorentz-transformed.

Schrodinger & Heisenberg Pictures

- When systems are time-evolved, there are two ways of thinking about it:
 - Heisenberg: The initial and final states are constant, but the Hamiltonian in the evolution operator is time-dependent.
 - □ Schrodinger: The operator is constant, but the states evolve in time.

Transition Amplitudes

Let's choose the Heisenberg picture. The transition amplitude is:

$$\tau_{f\leftarrow i} = \langle f | Texp \left[-i \int_{-\infty}^{\infty} dt H_I(t) \right] | i \rangle$$

 Let's chop this integral up into many little pieces. How can we interpret the timeordering symbol in light of relativity?
 Time-ordering must be frame independent.

Transition Amplitudes

If separation is time-like, no problem. If separation is space-like, we must require:

$$[\mathcal{H}_I(x), \mathcal{H}_I(x')] = 0$$

But in fact:

$$[\phi^+(x), \phi^-(x')]_{\mp} = \frac{m}{4\pi r^2} K_1(mr)$$

(see problem 4.1) This is never zero.

Resolving this Problem

- There must be some linear combination of φ⁺ and φ⁻ that will work – otherwise we can't add even a simple interaction term to the Lagrangian.
- Let's try the most general linear combination. We find:

$$[\phi_{\lambda}(x), \phi_{\lambda}(x')]_{\mp} = \lambda(1 \mp 1) \frac{m}{4\pi^2 r} K_1(mr)$$
$$[\phi_{\lambda}(x), \phi_{\lambda}^{\dagger}(x')]_{\mp} = (1 \mp |\lambda|^2) \frac{m}{4\pi^2 r} K_1(mr)$$

Resolving the Problem, cntd.

- This is zero if and only if:
 □ Choose anti-commutators
 □ Choose |λ| = 1
- But this second requirement gives us (up to a phase shift) φ again!
- We tried to start with a, a⁺, but it seems that the fundamental object is instead φ.
- Further, we must choose the anti-commutation operators to avoid a trivial L.