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e
Status

- It may seem like we’re drifting. In fact, we’re making
progress.
- QFT is based on the assumption of Lorentz-Invariance

- In chapter 33, we decided that the Lorentz Group needs to be put
in the (1,2) or (2,1) representation if we are to consider spin %
particles.

- In chapter 34, we wrote the Lorentz Group in the spinor
representation and worked out the generators

- In chapter 35, we worked out invariant symbols in the spinor
representation, and got a nice notation

- In chapter 36, we figured out the Lagrangian for our theory, and
also the fields W — these are analogous to ¢ from part 1.



e
Status

- How does our new theory for spin-1/2 particles compare to our
old scalar theory?

- We already have our free-field Lagrangian, our field W and our
equation of motion (the Dirac Equation). We've also figured out
some of the rules for mathematically dealing with spinors.

- But, we don’t have an LSZ formula or Feynman rules. We don'’t
know how_ to evalu_ate correlation functions, nor do we have
commutation relations.

- Our next task is to rebuild this stuff, so that we can compute
cross-sections and decay rates for spin-1/2 particles. In this
chapter:

- We figure out the (anti)commutation relations for the fields
- We solve the Dirac Equation to get a mode expansion for the field



Anticommutation

- The spin-statistics theorem tells us that Weyl fields anti-
commute.

- We will show in problem 37.1 that this extends to the fermion fields
Y and g bar.

- Explicitly:
{Valz,1), \Ijﬁ(% t)} =0

{Wal(z,t), Uy, )} = (1")asd™(z — y)



e
Slash Notation

- We introduce the Feynman Slash, which is:
— M
fo = ay

- The Dirac equation can therefore be written:

(—i p+m)¥ =0



Solving the Dirac Equation

- Note that we can square the Dirac Equation and recover
the Klein-Gordon equation. So, ¥ obeys the Klein-
Gordon equation, and must have plane-wave solutions:

U (z) = u(p)e™? + v(p)e P*

- Plugging this solution into the Dirac equation, we find that
we must also require

(H+m)u(p) =0
(— p+m)v(p) =0

- In fact, there are two possible solutions for u and for v.
We'll explore these in the next chapter.



Mode Expansion of y

- The most general solution of the Dirac Equation is
therefore:

v = Z/ dp [, (P)us (D)™ + di(P)o, (B)e ™

where b and d are some sort of operator. In fact, we're

about (chapter 39) to go to quantize the field, at which point
this will become creation/annihilation operators for fields.

First, though, we investigate the properties of u and v.



