QFT

Chapter 30: Spontaneous Symmetry Breaking

φ⁴ Theory, again

Consider φ⁴ theory:

$$\mathcal{L} = -\frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi - \frac{1}{2}m^{2}\phi^{2} - \frac{1}{24}\lambda\phi^{4}$$

- Some obvious observations:
 - We can swap φ --> -φ
 - In operator form, we can define $Z^{-1} \phi Z = -\phi$
 - Then $Z^2 = 1$, which implies $Z = Z^{-1}$
 - By definition, Z is unitary, so $Z^{-1} = Z^{H}$
 - This implies $Z = Z^H$, ie Z is Hermitian
- We can write this as:

$$\mathcal{L} = -\frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi - \frac{1}{24}\lambda(\phi^2 - v^2)^2 - \frac{1}{24}\lambda v^4$$

where $v = \sqrt{6|m^2|/\lambda}$. The last term is constant (at least, it doesn't have any φ s), so we drop it.

Ground State $\mathcal{L} = -\frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi - \frac{1}{2}m^{2}\phi^{2} - \frac{1}{24}\lambda\phi^{4}$ $\mathcal{L} = -\frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi - \frac{1}{24}\lambda(\phi^{2} - v^{2})^{2}$

- What is the ground state of this Lagrangian?
 - If $m^2 > 0$, then we can easily see from the original Lagrangian that there is only one ground state at $\varphi = 0$. Then $\langle 0|\varphi|0 \rangle = 0$, just as required by the renormalization scheme.
 - If $m^2 < 0$, then we see from the new Lagrangian that the ground is clear: $\varphi = \pm v$.
- In QFT also (with m² < 0), we expect two ground states, 0+ and 0-. These are exchanged by the operator 0, and are orthogonal.
 - Why orthogonal? Consider space as a collection of harmonic oscillators. You can tunnel from 0+ to 0-, but all infinitely many would have to do so, which lowers the amplitude to 0.

Broken Symmetry

Let's imagine that 0+ is the ground state (when m < 0).
Let's also define ρ = φ – v. This is required to fix our renormalization condition <0|ρ|0>.

$$\mathcal{L} = -\frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi - \frac{1}{6}\lambda v^{2}\rho^{2} - \frac{1}{6}\lambda v\rho^{3} - \frac{1}{24}\lambda\rho^{4}$$

- The second term coefficient could be set to $\frac{1}{2}$ m_{\rho}^{2}, the mass of the ρ particle.
- But there is a problem: where the hell is our Z₂ symmetry?
 - Spontaneously broken!

Symmetry Breaking in the Quantum Action

- Recall in problem 21.2, we showed that the quantum action inherits any linear symmetry of the classical action, provided that it is also a symmetry of the integration measure (which it usually is).
- The quantum action "therefore" shows the spontaneous symmetry breaking as well.
- All the ingredients of Γ(φ) are made finite with the three existing Zs, so no additional Zs are needed.
- We'll see how this works in the next section.