Unit 3: Canonical Quantization
(of Scalar Fields)



"
Overview

m We’ |l develop our first relativistic quantum
field theory.

IWill be valid for a universe with:

= Only spin-zero bosons, called .
= No @-¢ interactions
= The Klein-Gordon equation as the equation of motion

1 The Hamiltonian for our theory will be:

H = /dkwa a(k) 4+ (E — )V



"
Developing Intuition

m Recall our result from chapter one

= [ @) (~ o 92+ U0 ) a0+ [ EadyVix =y 6l (aly)a

m Here, we’ re only concerned with free, non-
interacting particles, so this simplifies
drasticallv:

H = /d%a (—%W) a(x)



"
Developing Intuition

= Now we want to simplify this further:

1 Units: we set i = ¢ = 1 and can restore these units by
dimensional analysis if necessary

1 Fourier Transforms: we define

where a(p) follows the same commutation relations as
a(x). We can think of at(p) as creating a particle with

momentum p (and indeterminate position, by
Heisenberg)

1 The result is:

1
H = / pzmp a (p)a(p)



"
Developing Intuition

H - / Py —ral (0)ip)

m [f this acts on a single particle state, the energy eigenvalue
will be p?/2m.

m To make this relativistic, we’ Il use Einstein’ s formula instead.
In our new units, H becomes:

H = / d*p(p? + m?)Y2a! (p)a(p)

m This is intuitive, but non-rigorous. Did it work out anyway?

1 Only for bosons. You’ d expect this argument to work out for fermions
as well, but that case fails when done rigorously.
= This makes sense — what the hell is a spin-0 fermion? More on this next time.

0 Only when the equation of motion is the Klein-Gordon Equation (not
the Schrodinger Equation, as one would expect from this “proof”)

1 We' ll spend the rest of the chapter redoing this result rigorously.



" A
Re-Derivation: Starting Point

= We start with classical real field ¢@(x)
0 @(x) is like temperature: returns real value for each point in space
01 Totally classical: no factors of hbar!

= We want this to be Lorentz Invariant from the beginning. If only we
had an equation that were Lorentz Invariant...

0 Klein-Gordon Equation! Choose this as equation of motion.
(0% +m*)g(x) =0

0 Remember: totally classical! No factors of hbar. To get the
dimensions to work out, m is not a mass, but a constant with
dimensions of length-'.

1 Objection: The Klein-Gordon Equation is wrong!

Response: No, it’ s just not consistent W|th QM. But for
(relativistic) elementary particles, QM is “wrong,” so we don’ t care if
we’ re consistent with QM or not.

= Better objection is that it is arbitrary — | have as yet given no indication that the
equation of motion couldn’ t be some other Lorentz-Invariant equation. But
this is our axiom, and it’ s justified by the experimental success of QFT.

0 See prbm. 3.4, which derives it assuming only the spacetime translation operator.



" S
Lagrangian

® This equation of motion results from the
Lagrangian:

L = —%8‘%@@ - %m2gb2 + O

(Srednicki sketches proof; see problem 3.5(a) for similar proof with more detail)



B
Solution of Klein-Gordon Equation
dk
f (k)
w = +Vk2 + m?
= We must impose “real-ness” directly:

d3k ik-x—iwt * —ik-x+iwt
¢(X, t) — f(k) [a<k)€ Ta (k)e ]

m [Then rewrite in 4-vector notation

o(x,t) = ;l;:) [a(k)eikx — a*(k)e_ikﬂ

¢(X7 t) — [a(k)eik'x—iwt + b(k)eik-x—l—iwt}




"
Lorentz-Invariant Differential

m A Lorentz-Invariant Differential would be nice.

1 Lorentz-Invariant condition (for real particles) is
k? = -m2.
47.5(7.2 2 0y . .
1 Hence, d"kd(k* +m?)0(k”) is Lorentz-Invariant
= Require on-shell
= Disallow negative-energy solutions

® Now do O-dimensional integral.
1 Result is d3k/2w.

m For convenience, we’ Il normalize differently,
choose Lorentz-Invariant differential to be:

—~ d*k
dk =
(27)32w




" A
Solution is now:

¢(X, t) — /Zi\é [a(k)e“cm + a*(k)e—ikaz}

m Next step is to use this explicit form in the
Lagrangian and remember that 4 =1l¢ — L

The result Is:

H=-Q)V + % dkw (a*(k)a(k) + a(k)a*(k))

(proved in Srednicki. | won’t go through the proof myself, since problem 3.5e is
very similar)



Quantize the Field

m This is the key step. Promote q (for us, ¢)
and p (for us, I'l) to operators with
commutation relations.

CFrom this, derive commutators for a and aT.
1Use this to rewrite the Hamiltonian.

H = /dkwa + (& — Q)V

[1Same result as our “intuitive” argument (just
different notation)



"

Ultraviolet Cutoff
m Recall that our solution is:
H = /dkwa + (& — Q)V

= For the moment, Q, is arbitrary, so we’ |l
set it equal to g,.

m But ¢, is defined by & = 1(27r> /d3kw

C11f we don’ t want this to be infinite, put an
upper limit (ultraviolet cutoff) on the integral.

[1Physically justified if QF T breaks down at
given energy



"
What about Fermions?

m WWe assumed commutation relations, so
we have bosons.

m Now let’ s assume anti-commutation
relations.

H = —Q,V + % diw (0 (K)a(k) + a(k)a* (k)
will become.
H = —-Q3V

Something’ s wrong! For the moment,
have to ignore “spin-0 fermions”™



"
Realistic?

= Are there any spin-0 (scalar) bosons?
1Yes: pion and Higgs Boson, for example

m Does this theory describe those particles
accurately?

1Yes, provided that they don’ t interact with
each other (or anything else) and are free.



"
What' s Next?

m We' re done — we have a relativistic QFT. But, it
sucks!
1 A bunch of scalar bosons that don’ t interact with each

other or any other particles or fields is not very
Interesting.

= Next time, we’ Il resolve this question about why
spin-0 fermions are no good.

m After that, we’ Il develop tools needed for an
iInteracting quantum field theory.



"
4-D Fourier Transformation

= In the problems (and later on), you’ Il need the
4-D Fourier Transforms (Srednicki 8.6):

amszm%%m
gb(:v) :/(;Zwl;eikxg(k)




