
QFT 

Unit 3: Canonical Quantization  
(of Scalar Fields) 



Overview 
n We’ll develop our first relativistic quantum 

field theory.   
¨ Will be valid for a universe with: 

n  Only spin-zero bosons, called φ. 
n  No φ-φ interactions 
n  The Klein-Gordon equation as the equation of motion 

¨ The Hamiltonian for our theory will be: 



Developing Intuition 
n Recall our result from chapter one 

n Here, we’re only concerned with free, non-
interacting particles, so this simplifies 
drastically: 



Developing Intuition 
n  Now we want to simplify this further: 

¨ Units: we set         and can restore these units by 
dimensional analysis if necessary 

¨ Fourier Transforms: we define 

 
 where a(p) follows the same commutation relations as 
a(x).  We can think of a†(p) as creating a particle with 
momentum p (and indeterminate position, by 
Heisenberg) 

¨ The result is: 



Developing Intuition 

n  If this acts on a single particle state, the energy eigenvalue 
will be p2/2m. 

n  To make this relativistic, we’ll use Einstein’s formula instead.  
In our new units, H becomes:  

n  This is intuitive, but non-rigorous.  Did it work out anyway? 
¨  Only for bosons.  You’d expect this argument to work out for fermions 

as well, but that case fails when done rigorously. 
n  This makes sense – what the hell is a spin-0 fermion? More on this next time. 

¨  Only when the equation of motion is the Klein-Gordon Equation (not 
the Schrödinger Equation, as one would expect from this “proof”) 

¨  We’ll spend the rest of the chapter redoing this result rigorously. 



Re-Derivation: Starting Point 
n  We start with classical real field φ(x) 

¨  φ(x) is like temperature: returns real value for each point in space 
¨  Totally classical: no factors of hbar! 

n  We want this to be Lorentz Invariant from the beginning.  If only we 
had an equation that were Lorentz Invariant… 
¨  Klein-Gordon Equation!  Choose this as equation of motion. 

¨  Remember: totally classical!  No factors of hbar.  To get the 
dimensions to work out, m is not a mass, but a constant with 
dimensions of length-1.   

¨  Objection: The Klein-Gordon Equation is wrong! 
 Response: No, it’s just not consistent with QM.  But for 
(relativistic) elementary particles, QM is “wrong,” so we don’t care if 
we’re consistent with QM or not. 

n  Better objection is that it is arbitrary – I have as yet given no indication that the 
equation of motion couldn’t be some other Lorentz-Invariant equation.  But 
this is our axiom, and it’s justified by the experimental success of QFT. 

¨  See prbm. 3.4, which derives it assuming only the spacetime translation operator. 



Lagrangian 

n This equation of motion results from the 
Lagrangian: 

 (Srednicki sketches proof; see problem 3.5(a) for similar proof with more detail) 



Solution of Klein-Gordon Equation 

n We must impose “real-ness” directly: 

n Then rewrite in 4-vector notation 



Lorentz-Invariant Differential 
n  A Lorentz-Invariant Differential would be nice. 

¨ Lorentz-Invariant condition (for real particles) is  
k2 = -m2.   

¨ Hence,                                   is Lorentz-Invariant 
n  Require on-shell 
n  Disallow negative-energy solutions 

n  Now do 0-dimensional integral. 
¨ Result is d3k/2ω.   

n  For convenience, we’ll normalize differently, 
choose Lorentz-Invariant differential to be: 



Solution is now: 

n Next step is to use this explicit form in the 
Lagrangian and remember that                   .  
The result is: 

 (proved in Srednicki.  I won’t go through the proof myself, since problem 3.5e is 
very similar) 

  



Quantize the Field 
n This is the key step.  Promote q (for us, φ) 

and p (for us, Π) to operators with 
commutation relations. 
¨ From this, derive commutators for a and a†. 
¨ Use this to rewrite the Hamiltonian.   

¨ Same result as our “intuitive” argument (just 
different notation) 



Ultraviolet Cutoff 
n Recall that our solution is: 

n For the moment, Ω0 is arbitrary, so we’ll 
set it equal to ε0.   

n But ε0 is defined by 
¨ If we don’t want this to be infinite, put an 

upper limit (ultraviolet cutoff) on the integral. 
¨ Physically justified if QFT breaks down at 

given energy 



What about Fermions? 
n We assumed commutation relations, so 

we have bosons.   
n Now let’s assume anti-commutation 

relations. 

 

 will become. 
 

 Something’s wrong! For the moment, 
have to ignore “spin-0 fermions” 



Realistic? 

n Are there any spin-0 (scalar) bosons? 
¨ Yes: pion and Higgs Boson, for example 

n Does this theory describe those particles 
accurately? 
¨ Yes, provided that they don’t interact with 

each other (or anything else) and are free. 



What’s Next? 
n  We’re done – we have a relativistic QFT.  But, it 

sucks! 
¨ A bunch of scalar bosons that don’t interact with each 

other or any other particles or fields is not very 
interesting.   

n  Next time, we’ll resolve this question about why 
spin-0 fermions are no good. 

n  After that, we’ll develop tools needed for an 
interacting quantum field theory. 



4-D Fourier Transformation 
n  In the problems (and later on), you’ll need the 

4-D Fourier Transforms (Srednicki 8.6): 


