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Chapter 27: Other Renormalization Schemes



Overview

- Recall that our expression for the amplitude still diverges at low
m. Here we fix that.

- Recall that in our expression for I, there are two free
parameters, A and B.
- These were fixed by requiring IN(-m2) = 0 and T(-m?2) = 0.

- But in the massless limit:
- M(-m?2) = 0 for all A, B.
- [T(-m?) is not well defined.

- Physically, the problem is that the one-particle states are not
separated from the multiparticle continuum by a finite gap in
energy (as in the previous section).



Renormalization Schemes

- We have until now required on shell (OS) renormalization
- The exact propagator has a pole at k? = -m?, with residue one

- A new option is modified minimal-subtraction (MS bar)
renormalization.

- Minimal Subtraction is designed such that A and B cancel the
infinity term in the self-energy (only).

- Modified Minimal Subtraction is the same thing, but with mu tilde
defined as before, rather than having mu = mu tilde.

- Advantages
- The MS bar scheme is well defined in the massless limit
- The OS scheme gives a self-energy that does not depend on mu



Consequences of
MS bar Renormalization Scheme

- The propagator will no longer have its pole at k? = -m?; it will be
somewhere else.

- By defiznition, the physical mass of the particle is at the new location; k?
=-m_.°.
ph

- So, the Lagrangian Parameter m no longer corresponds to the physical
mass m,;..

- The residue of the pole is no longer one.

- The field R-"2¢ has unit amplitude to create a one particle state.

- So, LSZ formula must be corrected by adding R-"2for each external
particle.

- Further, the Klein-Gordon wave operator hits each external propagator
and cancels the momentum-space pole, leaving a residue R.

- The net effect is a factor of R"2 for each external particle.

- The m in the LSZ formula corresponds to the physical mass,
not the Lagrangian parameter.



m and m,

- Recall the exact form of the propagator:
Agrs(k?) ™' = k* +m® — l<(k°)
- And that by definition:
Agrs(—=mypn) =0

- This gives:

mz, = m? — Hyrg(—m2,)

- Since 1 is O(a), we can write this as:
mz, = m?* — Iyg(—m?) + O(a”)

- which is (for @3 theory):
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Anomalous Dimension
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- This should be independent of u!

- To impose this, we need a and m to depend on p in such a manner
that m,, is left invariant.

- This manner is called the anomalous dimension of the mass
parameter, defined as follows:
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Residue of (new) pole, and V,

- The residue is defined by:
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- Doing the calculation, we find:
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- We can also use MS bar to find Vj:

Vas(ki, ko, k3) = g {1 — % / dF3In(D/u*) + O(a2)]



T ——
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- Recalculating V5, we remember to:
- Include LSZ correction factor from previous section

- Multiply by correction factor that accounts for angular resolution of
the detector

- Use vertex function and propagators from new renormalization
scheme.

- We find that:
3
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- At last, this is well-defined in the m --> 0 limit.



Beta Functions

- As before, we need the u dependence of a to be
cancelled by the explicit y dependence of the amplitude,
leaving the amplitude invariant.

- This dependence on dimensionality is defined by the beta

function:
do

B dln u

Bla)

- Calculating our beta function for ¢3 theory, we find that

do 3 5
= ——q
dIn 2




Asymptotic Freedom

- Solving this, we find that:

()
L+ Sa(m) In(ua /)

- Notice that as p decreases, a increases. This is called asymptotic
freedom.

- Remember that a is related to g; and y has dimensions of energy. So, the system
becomes more and more strongly coupled at lower energies.

- Put differently, the tree-level result is better and better at higher energies.

a(pe) =

- For massive particles, we should not choose py << m.
- s has a minimum at 4m?, so p below that will lead to a large log.
- If a << 1, then it’s fair to use perturbation theory at these low energies.

- For massless particles, a continues to increase at lower energies

- Hence, the terms with many factors of g are the most important ones. This is the
opposite of perturbation theory, so perturbation theory breaks down.

- S0, low energy physics may be quite different than what perturbation theory
predicts.



Infrared Freedom

- 3 theory is therefore asymptotically free.
- Hence, our well-defined results don’t necessarily work at low energy.

- That's good, because in this case, we know the correct low-energy
result: the particle will tunnel through the potential barrier and then lose
energy indefinitely.

- This is why the “real world” couldn’t possibly follow @3 theory, as discussed
before.

- What if we have asymptotic freedom in a system with a ground
state?

- If the sign of the beta function is positive, then the coupling increases
as M increases. So, perturbation theory breaks down if the energy is
too high.

- If the sign of the beta function is not always positive, then more
complicated behaviors can result. We'll discuss some of these in the
next section.



