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Chapter 27: Other Renormalization Schemes 



Overview 
•  Recall that our expression for the amplitude still diverges at low 

m.  Here we fix that.   

•  Recall that in our expression for Π, there are two free 
parameters, A and B.   
•  These were fixed by requiring Π(-m2) = 0 and Π’(-m2) = 0.   

•  But in the massless limit:  
•  Π(-m2) = 0 for all A, B.   
•  Π’(-m2) is not well defined. 

•  Physically, the problem is that the one-particle states are not 
separated from the multiparticle continuum by a finite gap in 
energy (as in the previous section).   



Renormalization Schemes 
• We have until now required on shell (OS) renormalization 

•  The exact propagator has a pole at k2 = -m2, with residue one 

• A new option is modified minimal-subtraction (MS bar) 
renormalization.   
•  Minimal Subtraction is designed such that A and B cancel the 

infinity term in the self-energy (only).   
•  Modified Minimal Subtraction is the same thing, but with mu tilde 

defined as before, rather than having mu = mu tilde. 

• Advantages 
•  The MS bar scheme is well defined in the massless limit 
•  The OS scheme gives a self-energy that does not depend on mu 



Consequences of  
MS bar Renormalization Scheme 

•  The propagator will no longer have its pole at k2 = -m2; it will be 
somewhere else. 
•  By definition, the physical mass of the particle is at the new location; k2 

= -mph
2.   

•  So, the Lagrangian Parameter m no longer corresponds to the physical 
mass mph. 

•  The residue of the pole is no longer one. 
•  The field R-1/2φ has unit amplitude to create a one particle state. 
•  So, LSZ formula must be corrected by adding R-1/2 for each external 

particle. 
•  Further, the Klein-Gordon wave operator hits each external propagator 

and cancels the momentum-space pole, leaving a residue R.   
•  The net effect is a factor of R1/2 for each external particle. 

•  The m in the LSZ formula corresponds to the physical mass, 
not the Lagrangian parameter.   



m and mph 
• Recall the exact form of the propagator: 

• And that by definition: 

• This gives: 

• Since Π is O(α), we can write this as: 

• which is (for φ3 theory): 



Anomalous Dimension 

• This should be independent of µ! 
•  To impose this, we need α and m to depend on µ in such a manner 

that mph is left invariant. 
•  This manner is called the anomalous dimension of the mass 

parameter, defined as follows: 



Residue of (new) pole, and V3 
• The residue is defined by: 

• Doing the calculation, we find: 

• We can also use MS bar to find V3: 



φφ --> φφ Scattering Amplitude 
• Recalculating V3, we remember to: 

•  Include LSZ correction factor from previous section 
•  Multiply by correction factor that accounts for angular resolution of 

the detector 
•  Use vertex function and propagators from new renormalization 

scheme. 

• We find that: 

• At last, this is well-defined in the m --> 0 limit.   



Beta Functions 
• As before, we need the µ dependence of α to be 

cancelled by the explicit µ dependence of the amplitude, 
leaving the amplitude invariant.   

• This dependence on dimensionality is defined by the beta 
function: 

• Calculating our beta function for φ3 theory, we find that 



Asymptotic Freedom 
•  Solving this, we find that: 

•  Notice that as µ decreases, α increases.  This is called asymptotic 
freedom.   
•  Remember that α is related to g; and µ has dimensions of energy.  So, the system 

becomes more and more strongly coupled at lower energies. 
•  Put differently, the tree-level result is better and better at higher energies.   
 

•  For massive particles, we should not choose µ << m.   
•  s has a minimum at 4m2, so µ below that will lead to a large log. 
•  If α << 1, then it’s fair to use perturbation theory at these low energies. 

•  For massless particles, α continues to increase at lower energies 
•  Hence, the terms with many factors of g are the most important ones.  This is the 

opposite of perturbation theory, so perturbation theory breaks down.   
•  So, low energy physics may be quite different than what perturbation theory 

predicts.   



Infrared Freedom 
•  φ3 theory is therefore asymptotically free.   

•  Hence, our well-defined results don’t necessarily work at low energy. 
•  That’s good, because in this case, we know the correct low-energy 

result: the particle will tunnel through the potential barrier and then lose 
energy indefinitely.  
•  This is why the “real world” couldn’t possibly follow φ3 theory, as discussed 

before.   

•  What if we have asymptotic freedom in a system with a ground 
state?   
•  If the sign of the beta function is positive, then the coupling increases 

as µ increases.  So, perturbation theory breaks down if the energy is 
too high.   

•  If the sign of the beta function is not always positive, then more 
complicated behaviors can result. We’ll discuss some of these in the 
next section.  


