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Chapter 26: Infrared Divergences 



The Problem 
•  In section 20, we computed the φφ --> φφ scattering amplitude in φ3 

theory in six dimensions in the high energy limit.   

•  The problem is that this includes a term proportional to ln(s/m2), which 
blows up in the limit m --> 0.   

•  This means that we have made a mistake – in fact, we’ve made two 
mistakes.  Both involve the fact that for a massless (or nearly 
massless) particle, there is a no (or very little) spacing between the 
discrete single-particle energy states.   
•  One problem is our assumption of a perfect detector.  Due to the continuum for 

massless particles, our process could, for example, create some extra very low 
energy (“soft”) particles that will not be detected.  We’ll fix this now. 

•  The other problem is that in the massless limit, the self-energy’s derivative is ill 
defined; the pole at k2 = -m2 in the Lehmann-Källén form of the propagator 
merges with the branch point at k2 = -4m2 that we discovered in problem 15.1b, 
and is no longer a simple pole.  We’ll fix this in the next section. 



Splitting Final States 
• Since there is now a continuum in energy, our final state 

particles can decay into two less energetic particles.  The 
amplitude for this process, by the Feynman Rules, is: 

•  This term can diverge!  To see the consequences of this, 
we calculate the cross-section.   
•  We know how to do this, but our detector won’t be able to tell the 

difference between a particle splitting or not splitting.  So, we have 
to add the probabilities for the two events, which are 
distinguishable in principle.   

 



Splitting Final States 
• After some math, we find: 

• Setting m --> 0, we have 

• As we integrate over all omega and theta, this will clearly 
diverge at the low end (for low dimensionality)!    
•  For dimensionality 6 or less, we have a divergence at low θ, 

corresponding to (nearly) collinear particles.   
•  For dimensionality 4 or less, we have the additional problem of a 

divergence at low ω, corresponding to soft particles. 



(Nearly) Collinear Particles 
•  Let us assume that our detector can’t tell the difference 

between two particles if the angle between their spatial 
momenta is smaller than δ. 

• Now we go back to our amplitude, do the math, and take 
the low mass limit.   
•  The theta integral should range from 0 to δ, since we can tell the 

difference between multiple particles at θ > δ.  
•  Also multiply by four, because any one of the four particles could 

split.   



Conclusions 
•  The result is the exact scattering amplitude in six spacetime 

dimensions. 
•  To be clear: there is an additional problem with soft particles.  These 

particles are not necessarily collinear, but have too little energy to be 
detected.  We already showed that this does not lead to a divergence in 6 
spacetime dimensions, so no issue for φ3 theory. 

•  From this we conclude: 
•  If δ is very small (ie our detector is very good), we will have to calculate high 

order corrections.   
•  It seems like we’re being punished for having a good detector, as a small δ 

decreases our amplitude.  What’s going on? 
•  Consider the tree-level φ3 vertex.  With a good detector, we wouldn’t count this 

toward the φφ --> φφ scattering amplitude.  With a crappy detector, there’s a 
chance that the outgoing φ actually masks two collinear outgoing particles, and so 
this diagram contributes a little bit, increasing the amplitude.     

•  We still have this dratted term of s/m2, which diverges in the massless limit.  
We’ll deal with this in the next chapter.   


