QFT

Chapter 22: Continuous Symmetries and Conserved Currents

Overview

- We now turn to our next topic: symmetries...
 - Continuous Symmetries (ch. 22)
 - Discete Symmetries (ch. 23)
 - Non-Abelian Symmetries (ch. 24)
- At the end of the part 1, we'll address symmetry breaking, which will help us construct the standard model in part 3

Transformation of the Lagrangian

Let's transform:

$$\phi_a(x) \to \phi_a(x) + \delta \phi_a(x)$$

• The Langrangian is therefore transformed as:

$$\delta \mathcal{L}(x) = \frac{\partial \mathcal{L}}{\partial \phi_a(x)} \delta \phi_a(x) + \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi_a(x))} \partial_\mu \delta \phi_a(x)$$

• Next, we use the field equation to find that: $0 = \frac{\delta S}{\delta \phi_a(x)} = \frac{\partial \mathcal{L}(x)}{\partial \phi_a(x)} - \partial_\mu \frac{\partial \mathcal{L}(x)}{\partial (\partial_\mu \phi_a(x))}$

Note that the first equality holds only if the classical field equations are satisfied.

The Noether Current

 Using these results, we can rewrite the infinitesimal Lagrangian as:

$$\delta \mathcal{L}(x) = \partial_{\mu} \left(\frac{\partial \mathcal{L}(x)}{\partial (\partial_{\mu} \phi_a(x))} \delta \phi_a(x) \right) + \frac{\delta S}{\delta \phi_a(x)} \delta \phi_a(x)$$

- The Noether current is the portion in large parenthesis.
- The Noether current is conserved if:
 - The field equations are satisfied
 - The Langrangian is invariant under the transformation.
- The upshot of this is that we get a new conservation law:

$$\partial_{\mu}j^{\mu} = 0$$

The Noether Charge

- The integral of the Noether current is the Noether charge
 - This must be constant in time, assuming reasonable boundary conditions
- By decomposing the field operators and creation/ annihilation operators, we find that:

$$Q = \int \widetilde{dk} \left[a^*(k)a(k) - b(k)b^*(k) \right]$$

which is the number of A particles minus the number of B particles. So the A and B particles have opposite Noether charge but the same mass. Sounds like antiparticles! More on this in next chapter...

Utility of the Noether Current

- We can use these ideas to derive some identities:
 - Schwinger-Dyson
 - Ward

These identities are rather mathematical, so I won't state or prove them here.

 If the differential change in the Lagrangian is nonzero, but rather a total divergence of a function K, there is still a conserved current:

$$j^{\mu}(x) = \frac{\partial \mathcal{L}(x)}{\partial (\partial_{\mu} \phi_a(x))} \delta \phi_a(x) - K^{\mu}(x)$$

 In the case of a spacetime translation, for example, we find that the Noether current is related to the stressenergy tensor, which is highly useful.

Lorentz Symmetry

 An infinitesimal Lorentz Transformation is another symmetry that has a conserved current associated with it. The conserved current is:

$$\mathcal{M}^{\mu\nu\rho}(x) = x^{\nu}T^{\mu\rho}(x) - x^{\rho}T^{\mu\nu}(x)$$

• The conserved charge is:

$$M^{\nu\rho} = \int d^3x \mathcal{M}^{0\nu\rho}(x)$$

- These are the generators of the Lorentz Group that were introduced before.
 - We can check this using the canonical commutation relations (see problem 22.3).