

Unit 2: Lorentz Invariance

Why are we talking about this?

- This is a bit of a departure from chapter 1!
- But, we want to impose relativity on our QFT from chapter 1. Lorentz Invariance allows us to formalize relativity.
- You' ve probably seen Lorentz Invariance before, but still go through this section very carefully.
 - □ New notation
 - The mathematical formalism for our "Lorentz Group" will be very important, and also a representative example of the group theory that we must deal with in QFT.

The Metric

The metric, and therefore the interval, must be invariant (as observed before). Mathematically, this means:

$$g_{\mu\nu}\Lambda^{\mu}_{\ \rho}\Lambda^{\nu}_{\ \sigma} = g_{\rho\sigma}$$

- We'll take the metric to be: g_{ab} = diag(-1, 1, 1, 1)
- I assume you' re already familiar with the idea of the metric and with index notation; I will not go through those here.

The Lorentz Group

- The Lorentz Transformations form a group. Why?
- Closure
- Identity
- Invertibility
- Associativity

We'll prove these statements separately.

This group has the mathematical structure O(1,3).

- O for orthogonal, i.e. the transformation will be linear. (if it weren't, couldn't write four-dimensional Lorentz transformation as one 4x4 matrix).
- \Box (1, 3) for time, space dimensions.

Infinitesimal Lorentz Transformations

The infinitesimal Lorentz Transformation is given by: $\Lambda^{\mu}_{\ \nu} = \delta^{\mu}_{\ \nu} + \delta \omega^{\mu}_{\ \nu}$

where this last term turns out to be antisymmetric (see problem 2.1)

This last term could be:

□ A rotation of angle θ, where $\delta \omega_{ij} = -\varepsilon_{ijk} \hat{n}_k \delta \theta$ □ A boost of rapidity η, where $\delta \omega_{ij} = \hat{n}_i \delta \eta$

Infinitesimal Lorentz Transformations

- Some Lorentz Transformations are formed by doing "many" infinitesimal ones.
- These will have the property of being proper and orthochronous
 - □ Proper: determinant = 1;
 - Improper: determinant = -1.
 - Determinants must be 1 or -1 (this follows from Srednicki 2.5, which I derive in problem 2.10).
 - □ Orthochronous: $\Lambda_0^0 \ge 1$
 - Non-orthochronous: $\Lambda^0_0 \leq -1$
 - Λ^0_0 must be one of these (follows from def' n of group, just plug in $\mu = v = \rho = \sigma = 0$)

Propriety & Orthochronaity

- Propriety and orthochronaity form subgroups of their own (proven separately).
 - Propriety has the structure SO(1, 3), where S is for special (determinant 1)
 - \Box Orthochronaity has the structure O*(1, 3).
 - The union of the subgroups, which is obviously a subgroup itself, has the structure SO*(1, 3)

Why is this important?

If QFT is to be consistent with relativity, it should be invariant under <u>proper</u>, <u>orthochronous</u> Lorentz Transformations.

That means we should be able to replace x with Ax at any time without changing anything. What about non-proper or nonorthochronous Lorentz Transformations?

In QFT, we won't care about these in general.

□ They correspond to discrete transformations

But, there are two interesting cases.
 Parity, P = diag(1, -1, -1, -1)
 Time Reversal, T = diag(-1, 1, 1, 1)
 These should be symmetries also, though we treat them separately

Why do we care about some Lorentz Symmetries and not others?

- Noether's Theorem: every symmetry has a conservation law.
 - □ Infinitesimal (proper & orthochronous) Lorentz Transformations lead to:
 - Rotations, which conserve **angular momentum**
 - Boosts, which conserve the quantity t(p_x) r_xE
 - Time-reversal leads to conservation of energy. This happens to be a Lorentz Transformation also.
 - Parity leads to conservation of momentum. This happens to be a Lorentz Transformation also
- Invariance under other Lorentz Transformations does not have to be enforced, because these transformations do not lead to valid conservation laws.

<u>Summary</u>

The Lorentz group is a mathematical object defined by the condition:

$$g_{\mu\nu}\Lambda^{\mu}_{\ \rho}\Lambda^{\nu}_{\ \sigma} = g_{\rho\sigma}$$

- In QFT, the "Lorentz Group" is restricted to the proper, orthochronous subgroup, since these are the physical symmetries we expect.
- The time-reversal and parity operators happen to be Lorentz matrices also, but we treat them separately

Unitary Operators

 "In quantum theory, symmetries are represented by unitary (or anti-unitary) operators"
 □ In this case, U(Λ)

• A Lorentz transformation is:

$$\phi_a(x) o U_{ab}(\Lambda) \phi_b(\Lambda^{-1}x)$$
 Peskin & Schroeder 3.8

- U is defined mathematically as: $U(\Lambda)^{-1}PU(\Lambda) = \Lambda P$

There's no new insight here. We can do this, so we do.

These operators must obey composition: $U(\Lambda'\Lambda) = U(\Lambda')U(\Lambda)$

Generators of a Group

We've seen the idea of a generator before: Momentum is the Generator of Translation. Let's review the proof of this:

$$f(x+x_0) = \sum_{n=0}^{\infty} \frac{1}{n!} x_0^n \nabla^n f(x)$$
$$p = \frac{\hbar}{i} \nabla \implies \nabla^n = \left(\frac{ip}{\hbar}\right)^n$$
$$f(x+x_0) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{ix_0p}{\hbar}\right)^n f(x)$$

Generator of the Lorentz Group

 The Lorentz Group has a generator too, though it's less intuitive. It is M^{μν}, where
 M is defined to be antisymmetric
 M is defined to be Hermitian
 The "condition to be a generator" is satisfied: U(1 + δω) = I + ⁱ/_{2ħ}δω_{μν}M^{μν}

 $\label{eq:matrix} \begin{array}{l} \Box \, \mbox{The commutation relations work out to be:} \\ [M^{\mu\nu}, M^{\rho\sigma}] = i\hbar \left(g^{\mu\rho} M^{\nu\sigma} - g^{\nu\rho} M^{\mu\sigma} - g^{\mu\sigma} M^{\nu\rho} + g^{\nu\sigma} M^{\mu\rho} \right) \\ (\mbox{see problem 2.3}) \end{array}$

Generators of the Lorentz Group

- We noted before that the Lorentz Group was made up of boosts and rotations
 The angular momentum operator (generator of rotation) is $J_i = \frac{1}{2} \varepsilon_{ijk} M^{jk}$
 - The "boost operator" (generator of boosts) is $K_i = M^{i0}$

□ Srednicki then derives a bunch of commutation relations (see problems 2.4, 2.6, 2.7).

The Poincaré Group

- If we combine the Lorentz Group and the Translation Group, we get the Poincaré Group.
- Poincaré Group: the group of isometries of Minkowski Spacetime
 - □ Isometry means distance preserving, ie the interval is preserved
 - As noted before, we're interested in only the continuous Poincaré Group – ie all translations + proper and orthochronous Lorentz transformations

The generators of the Translation and Lorentz Groups define the Lie Algebra of the Poincaré Group

□ Lie Algebra: generalized vector space (in this case, space of the generators) over a field (R^{1,3} in this case) with a Lie Bracket (in physics, usually commutation) and certain other axioms, which are automatically met if your Lie Bracket is commutation.

Spacetime Translation Operator

Time evolution is governed in quantum mechanics by the following:

$$e^{iHt/\hbar}\phi(x,0)e^{-iHt/\hbar} = \phi(x,t)$$

Now we can "fix" the translation operator: $T(a) = exp \left(-iP^{\mu}a_{\mu}/\hbar\right)$

Quantum Scalar Fields under a Lorentz Transformation

What happens? Srednicki proves that we expect the following (2.26, rewritten slightly):

$$\phi(\Lambda x) = U(\Lambda)\phi(x)U^{-1}(\Lambda)$$

where derivatives carry vector indices that transform in the appropriate way.

This is the key result of the section: to impose a Lorentz Transformation, we don't have to change the arguments and dependency variables of everything. We just have to use these two operators as shown.