QFT

Chapter 18: Higher-order corrections and
renormalizability



Renormalizability

- Renormalizability has to do with divergences in the values
of the diagrams.
If there are no divergences, then the theory is renormalizable

Otherwise, can the divergences be absorbed into the coefficients
of terms in the Lagrangian? If so, then renormalizable.

Otherwise, can a finite number of new terms be added to the
Lagrangian to cancel the divergences? If so, then
renormalizable.

Otherwise, nonrenormalizable.

- Nonrenormalizable theories can often make useful
predictions below an ultraviolet cutoff. More on this later.



Condition for Renormalizability

- Can we look at a Lagrangian and determine whether it is renormalizable or
not?

- Every Feynman diagram gives:
- d integrals for each loop

- Aterm proportional to I2, where | is the loop momentum, for each internal
propagator.

- S0 we define the superficial degree of divergence to be
D=dL-2I
where L is the number of loops and I is the number of internal propagators.

- If D <0, then there are at least as many terms in the denominator as in the
numerator, so everything is fine. Otherwise, the diagram is (at first
inspection) divergent.

- If D =0, then there is an I"in the denominator and and n integrals. But n integrals
means only |1 in the numerator, so the integral still converges.



A more useful condition for Renormalizability

- The tree-level diagram has value —iZ.gg. All diagrams must have the
same value (since they all go into the scattering amplitude in the
same way).

- Hence, the mass dimensionality of the diagram is the same as
the mass dimensionality of the coupling constant g.

- Recall that the Z:s are numbers, by definition.

- We can break apart the mass dimensionality of the diagram in terms
of the mass dimensionality of the components.

- Every loop integral contributes d
- Every internal propagator contributes -2.

- Every vertex contributes [g,], where n varies depending on the type of
vertex.



A more useful condition for Renormalizability

- Putting this together, we have:
D = [gE] o Z Vn[gn]

where E is the type of vertex corresponding to the tree
diagram, and n sums over all the different types of
vertices (if n = 4, the vertex joins 4 external lines). V, is
the number of each type of vertex.

- If any [g,] < 0, then we expect uncontrollable divergences,
since we can draw an infinite number of diverging
diagrams, forcing D > 0.



A more useful condition for Renormalizability

- But we know that [g,] depends on the number of dimensions and the
number of particles Being joined. Using our result from ch. 12, we
have a divergence if: 9d

> —
R

- Thus we are limited to:

- Powers no higher than ¢* in four dimensions
- Powers no higher than 3 in six dimensions

- Didn’t we already know this?

- We hinted at it before. This is our first time seeing that it would require an
infinite number of corrections to cancel all the divergences.

- We call D the superficial degree of divergence, because there are
exceptions to this rule.

- If the loop momenta in the numerator cancel, we might get convergence
even if D =2 0.

- If D < 0, we can still get divergence....



B
Divergences with D <0

- Consider these diagrams:
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- Both the loop and the CT vertex are divergent, but these divergences cancel.

- Even when the divergences don’t cancel, Z factor can be adjusted to cancel these
“divergent subdiagrams.”

- In both cases, the theory is renormalizable despite the divergence.

- Thus, if all couplings have nonnegative mass dimensions, the theory is
renormalizable.
- Proving this is very difficult, so we won’t bother.
- But, it turns out to be true for spin-0 and spin-1/2 fields.
- It’s true for spin 1 fields when there is an associated gauge symmetry
- It turns out that theories with spin > 1 are never renormalizable for d = 4.



