
QFT 
Chapter 18: Higher-order corrections and 
renormalizability 



Renormalizability 
• Renormalizability has to do with divergences in the values 

of the diagrams. 
•  If there are no divergences, then the theory is renormalizable 
•  Otherwise, can the divergences be absorbed into the coefficients 

of terms in the Lagrangian?  If so, then renormalizable. 
•  Otherwise, can a finite number of new terms be added to the 

Lagrangian to cancel the divergences? If so, then 
renormalizable. 

•  Otherwise, nonrenormalizable. 

• Nonrenormalizable theories can often make useful 
predictions below an ultraviolet cutoff.  More on this later. 



Condition for Renormalizability 
•  Can we look at a Lagrangian and determine whether it is renormalizable or 

not?   

•  Every Feynman diagram gives: 
•  d integrals for each loop 
•  A term proportional to l-2, where l is the loop momentum, for each internal 

propagator.   

•  So we define the superficial degree of divergence to be  
D = dL – 2I  

 where L is the number of loops and I	  is the number of internal propagators.    
 
•  If D < 0, then there are at least as many terms in the denominator as in the 

numerator, so everything is fine.  Otherwise, the diagram is (at first 
inspection) divergent. 
•  If D = 0, then there is an ln in the denominator and and n integrals.  But n integrals 

means only ln-1 in the numerator, so the integral still converges.   



A more useful condition for Renormalizability 

•  The tree-level diagram has value –iZEgE.  All diagrams must have the 
same value (since they all go into the scattering amplitude in the 
same way). 

•  Hence, the mass dimensionality of the diagram is the same as 
the mass dimensionality of the coupling constant gE.   
•  Recall that the ZEs are numbers, by definition. 

•  We can break apart the mass dimensionality of the diagram in terms 
of the mass dimensionality of the components.   
•  Every loop integral contributes d 
•  Every internal propagator contributes -2. 
•  Every vertex contributes [gn], where n varies depending on the type of 

vertex. 



A more useful condition for Renormalizability 

• Putting this together, we have: 

 where E is the type of vertex corresponding to the tree 
diagram, and n sums over all the different types of 
vertices (if n = 4, the vertex joins 4 external lines).  Vn is 
the number of each type of vertex.   

 
•  If any [gn] < 0, then we expect uncontrollable divergences, 

since we can draw an infinite number of diverging 
diagrams, forcing D > 0.   



A more useful condition for Renormalizability 
•  But we know that [gn] depends on the number of dimensions and the 

number of particles being joined.  Using our result from ch. 12, we 
have a divergence if: 

•  Thus we are limited to: 
•  Powers no higher than φ4 in four dimensions 
•  Powers no higher than φ3 in six dimensions 

•  Didn’t we already know this? 
•  We hinted at it before.  This is our first time seeing that it would require an 

infinite number of corrections to cancel all the divergences.   

•  We call D the superficial degree of divergence, because there are 
exceptions to this rule. 
•  If the loop momenta in the numerator cancel, we might get convergence 

even if D ≥ 0. 
•  If D < 0, we can still get divergence…. 



Divergences with D < 0 
•  Consider these diagrams: 

 
 
 
 
 

•  Both the loop and the CT vertex are divergent, but these divergences cancel.   
•  Even when the divergences don’t cancel, Z factor can be adjusted to cancel these 

“divergent subdiagrams.”   
•  In both cases, the theory is renormalizable despite the divergence. 

•  Thus, if all couplings have nonnegative mass dimensions, the theory is 
renormalizable. 
•  Proving this is very difficult, so we won’t bother.   
•  But, it turns out to be true for spin-0 and spin-1/2 fields. 
•  It’s true for spin 1 fields when there is an associated gauge symmetry 
•  It turns out that theories with spin > 1 are never renormalizable for d ≥ 4. 
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