
QFT 
Chapter 14: Loop Corrections to the Propagator 



Overview 
• Here we turn to our next major topic: loop order 

corrections.  We’ll consider the effect on the propagator 
first. 

• This has at least two advantages: 
•  More accurate decay rates, cross-sections, etc. 
•  But also surprisingly useful in its own right, for example, one 

argument for SUSY is that the Higgs propagator is unstable, but 
can be stabilized by loop-order supersymmetric corrections.  



Exact Propagator, again 
• Recall that the exact propagator is given by 

•  W is the sum over all connected diagrams. 
•  If there are more than  two sources, then imposing J = 0 will cause 

the term to vanish 
•  If there are less than two sources, then the derivative will kill the 

term 
•  So, we need to draw all diagrams with 2 sources (and then remove 

the sources).  Summing all these diagrams will yield the exact 
propagator.   



Exact Propagator, again 
• We give the propagator to O(g4) in φ3 theory: 
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Notes about these diagrams 
• Note that the O(g2) diagrams also contribute to O(g4), 

since both vertex factors have higher-order corrections. 
•  Srednicki is a little misleading on this point, since he includes only 

one such diagram in figure 14.3.   

• Note also that the counterterm diagram (the one that 
looks like an x) is order g2 – it therefore counts for two 
vertices.   
•  This is because Srednicki tells us that Zk = 1 + O(g2), and A, B are 

Zk – 1.   



Exact Propagator, perturbatively 
•  Let’s now use the Feynman Rules to determine the exact 

propagator in momentum space.  This will be perturbative, 
since we’re summing over the diagrams.    

• Note that: 
•  The symmetry factor for the loop diagram is 2. 
•  The vertex factor for the 3-point vertex is ig, since Zg = 1 + O(g2).   
•  These diagrams are for a propagator, not a scattering process, so 

the external lines get the free-field propagator factor, not the factor 
of 1 associated with external lines.   

•  Δ(k2) refers to the exact propagator, while Δ(k2) refers to the free-
field propagator.  This is rather confusing notation, but is consistent 
with the book.   

 



Exact Propagator, perturbatively 
•  The result is that: 

    where Π(x) represents the self-energy: 
 
 
 
• Back to the Feynman Diagrams, let’s define a one-particle 

irreducible (1PI) diagram to be one that is still connected 
after any one internal line is cut 
•  Internal means not including the two external propagators.  

Srednicki is a little unclear on this. 

 



1PI Diagrams 
•  Let’s label which of these diagrams are 1PI diagrams, and 

which ones are not.   
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Exact Propagator, perturbatively 
• Now, how can we expand to fourth order? 

•  What we’ve done in the past is to go by vertices. We draw all the 
diagrams with four or fewer vertices, and keep the fourth-order 
contributions from each diagram.   
•  The problem is that there are many diagrams! 

•  A better option is to go by 1PI vertices.  We’ll define Π to be the 
sum of 1PI diagrams, and define the exact propagator to be given 
by: 

•  It is easy to see that this is identical to the vertex-expansion, though the 
terms are organized differently.  All the 1PI diagrams (even the 
complicated ones with many vertices) are in the second term, while 
those diagrams with two 1PI components come later (even the simple 
ones with only 4 vertices) 



Exact Propagator, perturbatively 
•  Another advantage is that this geometric series can be 

summed.   

•  Applying this to our expansion, and using the explicit form of 
the free-field theory propagator that we found in chapter 8, this 
becomes: 

•  This is sort of a nice formula, similar to our result from chapter 
10, but inclusive of loop-order corrections.   
•  Also there are only 1PI diagrams that need to be summed over – we 

don’t have to sum over every diagram with a vertex.    



Exact Propagator, perturbatively 

 
•  The Lehmann-Källén formula tells us that we should have 

a pole at k2 = -m2 with residue 1.  This implies that: 
  Π(-m2) = 0 
  Π’(-m2) = 0, where the prime denotes the k2 derivative. 

• We will use these to fix the values of A and B. 
 



O(g2) Corrections to Propagator 
• We’ve now established that if we know Π, we can get the 

propagator.  We also know that Π is given by: 

    and of course: 

• But if d > 3, then this integral will diverge at large l 
•  Imagine polar coordinates.  In four dimensions (or higher), the 

integration measure will have a factor of l3 (or higher).  Doing the 
integral will give something of leading order log l (or higher), which 
diverges at large l.   



O(g2) Corrections to Propagator 
• For now, we’ll restrict ourselves to d < 4 to avoid this 

problem.  We saw in chapter 12 that we eventually want 
to work in d = 6 (for this φ3 theory), so we can’t avoid this 
problem forever. 

• Even given this assumption, this integral is still very 
difficult to evaluate – and will get even harder for more 
complicated theories at higher orders.   
•  We will therefore spend some time developing a “bag of tricks” 

which we can use to get through these types of integrals.   



Trick #1: Feynman’s Formula 
• Feynman’s Formula allows us to combine denominators: 

• The integration measure is defined as: 

• The normalization is given by: 



Evaluating the Self-Energy, 1 
• Recall that our definition of Π(k2) contains two (internal) 

propagators.  We use Feynman’s formula to simplify: 

• After some algebra, we obtain: 

 
where we suppressed the epsilons for notational convenience 



Evaluating the Self-Energy, 2  
•  Finally, let’s change the integration variable for the self-

energy from l to q.   

• Writing the entire self-energy, we find: 

   where we have: 



Trick #2: Wick Rotation 
•  Let’s think of the q0 integral as being a contour integral in 

the complex plane.  The Wick Rotation rotates the contour 
counterclockwise by 90°.  This is allowed: 
•  So long as we don’t pass over any poles (we obviously won’t in the 

case at hand, see figure 14.4) 
•  So long as the integrand vanishes fast enough as the magnitude of 

q0 diverges (this is the usual condition for contour integrals) 

• This is imposed by the following relation: 

• The advantage of this is that we can set ε = 0, since the 
singularity is no longer along the axis of integration. 



Evaluating the Self-Energy, 3 
• The self-energy is given by: 

•  Let’s define part of this to be I(k2): 



Trick #3: Second Derivative 
•  Before moving on, let’s take the second derivative of this.  This has 

two advantages: 
•  No need to explicitly compute A and B, we can just proceed and then take 

two integrals when we’re done.  This will save us a few steps. 
•  The integral will now be finite for d < 8, rather than d < 4.  This is a huge 

help, since the case of greatest interest (d = 6) is now included.   
•  How did that happen?  What’s really going on is that we’re Taylor expanding I(k2), 

and then choosing A and B to cancel the first two terms.  The remaining terms 
must be finite, which is the case for d < 8.   

•  Of course, this means that Zφ and Zm are formally infinite (this is similar to Y, as 
we saw in chapter 9).  But that’s OK, since these are not directly measurable 
parameters; all the formally infinite numbers will cancel (by design) when 
computing the self-energy.   

•  The point of this trick is that we know we can analytically continue our 
results to the region 4 ≤ d ≤ 8. 
•  We could certainly get the result by using this trick, but we may prefer to 

obtain the result through a different method.   



Renormalizability 
• What if this hadn’t worked out?  Or what if we lived in a 9-

dimensional universe?  How then would we deal with an 
infinite self-energy? 

• This means that something is wrong with the theory – we 
call such theories nonrenormalizable.  We’ll discuss this 
more later. 

•  It turns out that φ3 theory is renormalizable for d < 7.  The 
problem with d = 7 is in the higher order corrections.   
•  We’ve already shown, of course, that it’s renormalizable for d < 9 

up to O(g2) 



How to proceed? 
• We currently have: 

• Options: 
•  Use trick #3 – take two derivatives, do the integral, then take two 

integrals and fit the boundary conditions.   
•  Use Pauli-Villars Regularization, which is what we did in chapter 9.  

Multiply the free propagator by a factor of Λ2/(p2 + Λ2 – iε), fit the 
boundary conditions, and allow Λ → ∞.   

•  Use dimensional regularization: just do the integral directly, and 
analytically continue the result to d = 6, which we know is OK due to 
trick #3.   

• We choose option #3. 



Trick #4: Shift Dimensionality to mu tilde 
• Now let’s do the integral.  The result is: 

• Recall that the mass dimension of g depends on the 
dimensionality of the problem.  This is quickly going to get 
confusing, so let’s shift                   .  Now g is always 
dimensionless, and mu is always not.   
•  This is not a general result: the definition of mu depends on the 

theory being considered.   
•  Further, mu is not a “real” parameter, so nothing measurable 

should depend on it.   



Evaluating the Self-Energy, 4 
• Defining α = g2/(4π)3 and ε = 6-d we have: 

• At this point there are no more tricks, all that remains is to 
do the calculus.  The result is given by: 

• We already found the exact propagator, but we can also 
write it like this: 



Conclusions 
• The only unsettling thing about our result is the way that 

the real part of the self energy increases logarithmically 
with k2

 as k2 is large.  We’ll address the meaning of this 
later.   

• Nonetheless, we have a formula for the exact propagator 
in terms of the self-energy, and we calculated the self-
energy to second order.    


