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Unit 13: The Lehmann-Källén form of the 
Exact Propagator 



Overview 
n  In this short section, we pause briefly to derive 

an exact form for the momentum-space 
propagator, which may be useful later on. 

n Next time, we turn to our next major topic: 
loop corrections as they apply to the field 
theory we’ve developed previously.     



Momentum-Space Propagator  
in Free Field Theory 

n We defined this in eqn. 8.11 for position-
space.  Now let’s take the Fourier 
transform to get this in momentum-space: 

n Now our job is to get something analogous 
for interacting field theory:  



Derivation of Lehmann-Källén, 1  

n  We start with the definition of the propagator: 

n  For simplicity, we’ll assume these are already time-
ordered, and insert a complete set of states: 

n  Now consider that there are three types of states:  
¨ The ground state 
¨ One-particle states 
¨ Multi-particle states.   



Derivation of Lehmann-Källén, 2  
n  Accounting for these three types of states, we have: 

¨  In the last state, n refers to all the junk needed to specify the 
state, and the sum indicates to integrate or sum over all of it. 

n  The first term can be killed by our renormalization 
scheme.  Remember that we set this to zero because 
we didn’t want the creation operator “inside” φ to 
create some linear combination of the ground state. 



Derivation of Lehmann-Källén, 3 
n  Now we have: 

n  Again, we can use the renormalization scheme.  
Separating out the time dependence, we get 

n  This is a Lorentz-invariant function of p, which must 
be p2 = -m2, which is a constant – so the entire 
thing must be a constant.  We want the constant to 
equal one, just as in free-field theory, where it 
yields a correctly normalized state.   



Derivation of Lehmann-Källén, 4 

n Now we have: 

n Separating out the time-dependence 
gives: 



Spectral Density 
n  Typically in physics, we use spectral density to 

show the frequency-dependence of Energy 

n  Here, we make the definition: 

n  It may not be immediately obvious that this is 
spectral density, but early signs look good.   
¨ This is the probability of transition from a one particle 

state to a multi particle state, given that the multi-particle 
state has a total mass M, which is at least 2m (and 
probably more due to relative momentum).   

¨ M is part of the “junk” specified by n. 
¨ Using s rather than M2 is just a convention.  In particular, 

it has nothing to do with the Mandelstam variable s. 



Derivation of Lehmann-Källén, 5 
n Now we have: 

n But this is only for x0 > y0.  If we do this for 
y0 > x0, then get the same thing reversed.  
We combine these results with theta 
functions.   
¨ But this seems familiar!  We did this in chapter 

8.  Referring back to that section, we find a 
more compact way to write this… 



Derivation of Lehmann-Källén, 6 
 

n Taking the d-dimensional Fourier 
Transform: 

 which is our result.   


