QFT

Unit 13: The Lehmann-Kallén form of the
Exact Propagator



» I
Overview

m In this short section, we pause briefly to derive
an exact form for the momentum-space
propagator, which may be useful later on.

m Next time, we turn to our next major topic:
loop corrections as they apply to the field
theory we’ ve developed previously.



Momentum-Space Propagator
in Free Field Theory

m \We defined this in eqn. 8.11 for position-
space. Now let’ s take the Fourier
transform to get this in momentum-space:
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m Now our job is to get something analogous
for interacting field theory:
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m \We start with the definition of the propagator:

Az —y) = i{0[T'o(x)o(y)|0)

m For simplicity, we’ Il assume these are already time-
ordered, and insert a complete set of states:

Alr—y) =i Y (06 (x)]) (ilé(y)]0)

m Now consider that there"are three types of states:
The ground state

One-particle states
Multi-particle states.
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m Accounting for these three types of states, we have:

Az = 9) =i | 010060+ [ Tl (Kio(w)0
+ 3 [ dololen i ris)o)|

In the last state, n refers to all the junk needed to specify the
state, and the sum indicates to integrate or sum over all of it.

m The first term can be killed by our renormalization
scheme. Remember that we set this to zero because
we didn’ t want the creation operator “inside” ¢ to
create some linear combination of the ground state.
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m Now we have:
Alx —y) =1 [/3/5<0|¢(x>k></~€¢(y)|0>+2/5l75<0¢(x)!k,n><k,n|¢(y)0>

m Again, we can use the renormalization scheme.
Separating out the time dependence, we get

e~ (pl¢(0)[0)

m This is a Lorentz-invariant function of p, which must
be p? = -m?, which is a constant — so the entire
thing must be a constant. We want the constant to
equal one, just as in free-field theory, where it
yields a correctly normalized state.
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= Now we have:

Aw—y) =i | [ dke e 37 [ dolo@)lk,n) (k,nlo(w)]0

m Separating out the time-dependence
gives:
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Spectral Density

m Typically in physics, we use spectral density to
show the frequency-dependence of Energy

m Here, we make the definition:

pls) = Z "/. n.|(,',‘) () ‘[) ‘gr\. (s — M? ]
i

m [t may not be immediately obvious that this is
spectral density, but early signs look good.
This is the probability of transition from a one particle
state to a multi particle state, given that the multi-particle

state has a total mass M, which is at least 2m (and
probably more due to relative momentum).

M is part of the “junk” specified by n.

Using s rather than M? is just a convention. In particular,
it has nothing to do with the Mandelstam variable s.
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m Now we have:

. = . e —_— )
Alx—y) =1 ﬂ:t[’:'(""“ ==y} 4 / ds pls) / df:e™ =Y I}
" 4"‘.‘2 L

m But this is only for x° > y9. If we do this for
y0 > X0, then get the same thing reversed.
We combine these results with theta
functions.

But this seems familiar! We did this in chapter
8. Referring back to that section, we find a
more compact way to write this...
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m Taking the d-dimensional Fourier
Transform:
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which Is our result.



