QFT

Unit 11: Cross Sections and Decay Rates



Decays and Collisions

When it comes to elementary particles, there are
only two things that ever really happen:

One particle decays into stuff
Two particles collide into each other.

So, our goal is really to calculate two things:

Decay rates
Cross-sections (“collision rates™)

We' Il start with collisions, specializing to the case of
two incoming and two outgoing particles.



Mandelstam Variables

We’ re deeply concerned about the kinematics of
the collision, so let’ s define three variables that
will be useful:
s = -(ky + k)2 =-(k; — Ky )?
Center of mass energy squared
t=-(ky =Ky )2 =-(ky - k')
Related to angle between k, and k, " .

U=-(ky—ky" )>=-(ky—ky )2

These follow the linear relation:
s+t+u=mZ+my?+m?+my?

Better yet, these are each Lorentz-Invariant.



Kinematics of the Collision

Recall that all these particles are on shell,
meaning that k2 = -m?.

In the center-of-mass frame:
The initial vector three-momenta must sum to zero.

K, is defined to be along the +z-axis

The only other thing needed to define the initial state
is the magnitude of k; which can be calculated from s.

There are a few useful formulas that relate the
Mandelstam variables to the kinematic details in
various frames; Srednicki works these out. It's
just algebra, so | won’ t go through it here.



Differential Scattering Cross Section

Assumptions:
Whole experiment takes place in box of volume V
Whole experiment lasts for a long time T.

The number of outgoing particles will be arbitrary (to get the most
general answer)

We want the probability of a transition from i to f.

This is given by: p_ U10F
J Y- b= ipn

where (f]i) = (2)*6* (kin — kour)iT

As for squaring the delta function — the second delta
function is just 8%(0), and (21)*d%(0) = VT (see eqn. 11.14)



Differential Scattering Cross Section, cntd.

Remember also equation 9.3:
(K'|k) = (2m)°2K 6% (K — k)
The delta functions make sense; the first three terms

are required since the integral will be with respect to
dLIPS.

Putting all this together, the probability per unit
time is given by:
(2m)*0* (ki — Kowt)V|T|?
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Differential Scattering Cross Section, cntd.

This result is the probability of decaying into a particle
with momentum exactly k,, k,, etc.

Remember that we're in a box, so these are quantized (though
infinite) and the probability for the lower states are nonzero.

To remove the box requirement, we take:
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The result is:

o (2m) 40 ki — Kow), o Tr
P=—Fmy " jHldkj




Differential Scattering Cross-Section, cntd.

Remember what a cross-section is:

Effective area seen by particles that could potentially collide.

For many incoming particles, the cross section is proportional to the
probability of interaction
Probability that a particle will interact = o/V = do/dQ (in limit of many particles)

Since we could potentially have many incoming particles, we have to divide by
incident flux.

Incident Flux:

Number of particles per unit volume, times their speed.
So, incident flux is |k4|/E4V.

The result is that the differential scattering cross section is:

1
do = — 7|2 dLIPS,, (k1 + k)

A|k1|oary/s
where dLIPS,. (k) = (2m)%5* ( Z K, ) [T dk;




Differential Cross-Sections for 2 to 2 Scattering

If we specialize to the case with two outgoing particles, we
can simplify. This is just calculus (though there are some

tricks that are worth observing), so | quote the result:
do 1|k \‘ 2
dQcr T 64n2s |k1 |

The problem is that this is not Lorentz-invariant. The Lorentz-

iInvariant equivalent is:
do 1

At 64ms|ks|?
Remember that |k,| is given by a complicated function of s.

This can be converted to do/dQ in a given frame by taking the
differential of dt in that frame. This leads to complicated results,

however — see problem 11.2 for an example.
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Total Cross Section

The total cross section is by integrating
over the outgoing momenta and dividing
by a symmetry factor:

1
o = H-n’-!/da

The symmetry factor is needed because the
final state is labeled by an unordered list of
the momenta, not an ordered list of them.




Cross-Section for @3 Theory

We worked out in chapter 10 the matrix element for ¢3
theory (something messy). Writing it with Mandelstam
variables, it cleans up nicely:

1 1 1
9 4
T=49 m2—s+m2—t+m2—u +0(g")

At least one of s, t, and u cannot be linearly
iIndependent: it turns out here that both are (easiest to
see in the CM frame). So, this becomes complicated
again. To make sense, we expand around:
Non-relativistic limit: nearly isotropic distribution

Relativistic limit: highly-peaked in forward and backward
directions.



Cross-Section for ¢° Theory, cntd.

These expansions can be integrated to
find the total cross section. The result is
again complicated, but may depend on
Mandelstam variables (since these are
frame-independent).




Decay

Recall that the transition amplitudes are based on the LSZ
formula, and the LSZ formula requires that particles be an exact
eigenstate of the exact Hamiltonian

See chapter 5, where we made a big deal about the multi-particle states
and creation-operators working the same way as those for the single-
particle states

But this is not the case for a particle that can decay!

We’'ll address this issue later (ch. 25). For the moment, let’s
assume that the LSZ formula still works.

All the analysis from before still holds (except the initial state is
redefined). Realizing that dI" = I°, we have:

1 1
I'=— [ —|7|*dLIPS,,
5 [ g IrPALIPS ()

Also, s is now just m?, since there is no second particle.



