

Unit 11: Cross Sections and Decay Rates

Decays and Collisions

- When it comes to elementary particles, there are only two things that ever really happen:
 - One particle decays into stuff
 - Two particles collide into each other.
- So, our goal is really to calculate two things:
 - □ Decay rates
 - □ Cross-sections ("collision rates")

We'll start with collisions, specializing to the case of two incoming and two outgoing particles.

Mandelstam Variables

We're deeply concerned about the kinematics of the collision, so let's define three variables that will be useful:

□ s =
$$-(k_1 + k_2)^2 = -(k_1' - k_2')^2$$

• Center of mass energy squared
□ t = $-(k_1 - k_1')^2 = -(k_2 - k_2')^2$
• Related to angle between k_1 and k_1'
□ u = $-(k_1 - k_2')^2 = -(k_2 - k_1')^2$

These follow the linear relation: $s + t + u = m_1^2 + m_2^2 + m_{1'}^2 + m_{2'}^2$

Better yet, these are each Lorentz-Invariant.

Kinematics of the Collision

- Recall that all these particles are on shell, meaning that k_i² = -m_i².
- In the center-of-mass frame:
 - □ The initial vector three-momenta must sum to zero.
 - \Box k₁ is defined to be along the +z-axis
 - □ The only other thing needed to define the initial state is the magnitude of k_{1} , which can be calculated from s.

There are a few useful formulas that relate the Mandelstam variables to the kinematic details in various frames; Srednicki works these out. It's just algebra, so I won't go through it here.

Differential Scattering Cross Section

Assumptions:

- □ Whole experiment takes place in box of volume V
- □ Whole experiment lasts for a long time T.
- The number of outgoing particles will be arbitrary (to get the most general answer)
- We want the probability of a transition from i to f. This is given by: $P = \frac{|\langle f | i \rangle|^2}{\langle f | f \rangle \langle i | i \rangle}$

where
$$\langle f|i\rangle = (2\pi)^4 \delta^4 (k_{in} - k_{out}) i\tau$$

□ As for squaring the delta function – the second delta function is just $\delta^4(0)$, and $(2\pi)^4 \delta^4(0) = VT$ (see eqn. 11.14)

Differential Scattering Cross Section, cntd.

Remember also equation 9.3: $\langle k'|k \rangle = (2\pi)^3 2k^0 \delta^3 (\vec{k}' - \vec{k})$

The delta functions make sense; the first three terms are required since the integral will be with respect to dLIPS.

Putting all this together, the probability per unit time is given by:

$$\dot{P} = \frac{(2\pi)^4 \delta^4 (k_{in} - k_{out}) V |\tau|^2}{4E_1 E_2 V^2 \prod_{j=1}^{n'} 2k'_j V}$$

Differential Scattering Cross Section, cntd.

- This result is the probability of decaying into a particle with momentum *exactly* k₁, k₂, etc.
 - Remember that we're in a box, so these are quantized (though infinite) and the probability for the lower states are nonzero.
 - To remove the box requirement, we take:

$$\sum_{\vec{n}'_j} \to \frac{V}{(2\pi)^3} \int d^3k'_j$$

The result is:

$$\dot{P} = \frac{(2\pi)^4 \delta^4 (k_{in} - k_{out})}{4E_1 E_2 V} |\tau|^2 \prod_{j=1}^{n'} \widetilde{dk}'_j$$

Differential Scattering Cross-Section, cntd.

- Remember what a cross-section is:
 - □ Effective area seen by particles that could potentially collide.
 - For many incoming particles, the cross section is proportional to the probability of interaction
 - Probability that a particle will interact = $\sigma/V = d\sigma/d\Omega$ (in limit of many particles)
 - Since we could potentially have many incoming particles, we have to divide by incident flux.
- Incident Flux:
 - □ Number of particles per unit volume, times their speed.
 - □ So, incident flux is $|k_1|/E_1V$.
- The result is that the differential scattering cross section is:

$$d\sigma = \frac{1}{4|\vec{k}_1|_{CM}\sqrt{s}} |\tau|^2 d\text{LIPS}_{n'}(k_1 + k_2)$$

where $d\text{LIPS}_{n'}(k) = (2\pi)^4 \delta^4 \left(k - \sum_{i=0}^{n'} k'_i\right) \prod_{j=1}^{n'} \widetilde{dk}'_j$

Differential Cross-Sections for 2 to 2 Scattering

If we specialize to the case with two outgoing particles, we can simplify. This is just calculus (though there are some tricks that are worth observing), so I quote the result:

$$\frac{d\sigma}{d\Omega_{CM}} = \frac{1}{64\pi^2 s} \frac{|\vec{k}_1'|}{|\vec{k}_1|} |\tau|^2$$

The problem is that this is not Lorentz-invariant. The Lorentzinvariant equivalent is:

$$\frac{d\sigma}{dt} = \frac{1}{64\pi s |\vec{k}_1|^2} |\tau|^2$$

- \square Remember that $|k_1|$ is given by a complicated function of s.
- This can be converted to dσ/dΩ in a given frame by taking the differential of dt in that frame. This leads to complicated results, however see problem 11.2 for an example.

Total Cross Section

The total cross section is by integrating over the outgoing momenta and dividing by a symmetry factor:

$$\sigma = \frac{1}{\prod_i n'_i!} \int d\sigma$$

The symmetry factor is needed because the final state is labeled by an unordered list of the momenta, not an ordered list of them.

Cross-Section for ϕ^3 Theory

We worked out in chapter 10 the matrix element for φ³ theory (something messy). Writing it with Mandelstam variables, it cleans up nicely:

$$\tau = g^2 \left[\frac{1}{m^2 - s} + \frac{1}{m^2 - t} + \frac{1}{m^2 - u} \right] + O(g^4)$$

- At least one of s, t, and u cannot be linearly independent: it turns out here that both are (easiest to see in the CM frame). So, this becomes complicated again. To make sense, we expand around:
 - Non-relativistic limit: nearly isotropic distribution
 - Relativistic limit: highly-peaked in forward and backward directions.

Cross-Section for ϕ^3 Theory, cntd.

These expansions can be integrated to find the total cross section. The result is again complicated, but <u>may depend</u> on Mandelstam variables (since these are frame-independent).

Decay

- Recall that the transition amplitudes are based on the LSZ formula, and the LSZ formula requires that particles be an exact eigenstate of the exact Hamiltonian
 - See chapter 5, where we made a big deal about the multi-particle states and creation-operators working the same way as those for the singleparticle states
 - □ But this is not the case for a particle that can decay!
- We'll address this issue later (ch. 25). For the moment, let's assume that the LSZ formula still works.
 - □ All the analysis from before still holds (except the initial state is redefined). Realizing that $d\Gamma = \dot{P}$, we have:

$$\Gamma = \frac{1}{S} \int \frac{1}{2E_1} |\tau|^2 d\text{LIPS}_{n'}(k_1)$$

 \Box Also, s is now just m², since there is no second particle.