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Unit 10: Scattering Amplitudes and the 
Feynman Rules 



Overview 
n  Time to find a use for Z(J) that we so painstakingly 

calculated in the previous section! 

n  The main use is to evaluate the correlation functions 
in the LSZ formula, giving scattering amplitudes. 

n  It turns out we can save a lot of math by introducing the Feynman 
Rules.   

n  The next step will be to turn this scattering amplitude 
into a cross-section (that’s the next section).   



Correlation Functions 

n  Let’s start here: 

¨ The first equality is taken as the definition of the 
propagator 

¨ The second equality is our usual trick for evaluating 
correlation functions from path integrals, see eqns. 
7.15 and 8.14. 

n  For notational simplicity, we’ll write this as: 



Correlation Functions, Cntd. 

n Simply by doing the calculus, the right hand 
side becomes: 

n This second term has two factors of             , 
both of which are 0 by our choice of 
renormalization.   Thus, only the first term 
survives. 



Correlation Functions, Cntd. 
n  So, we’ve shown that: 

n  What the hell is this?  W(J)|J=0 is the sum of diagrams 
with 2 sources, with both the sources removed.   
¨  The propagator endpoints are labeled x1 and x2.  This will reduce 

the symmetry factor.   
¨  How many diagrams are there?  An infinite number, but only one 

has less than two vertices, it looks like this (after source removal): 

¨  So, we’ve shown this fascinating fact: 

x1 x2 



Correlation Functions, Cntd. 
n  Let’s keep going with this.  By doing the 

calculus as before, and dropping all the terms 
with any factors of              , we find: 

n  When we insert these last three terms into the 
LSZ formula, the answer includes the following: 

n  So, these terms represent only scattering in the 
trivial (non-interacting sense).  Let’s drop them. 



Correlation Functions, Cntd. 

n  In fact, we must drop all terms except those with 
fully connected diagrams.  These “connected 
correlation functions” are defined via: 

n  For the two-body scattering as before, there are 
three connected, zeroth-order (“tree-level”) 
diagrams that contribute 
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Tree-Level Diagrams 

n  Called tree-level diagrams because there are no loops. 
¨  For all processes, the tree-level diagrams represent the lowest order (in 

g) contributions to that process. 
n  Notice that we’ve stripped off (by the derivatives) the sources, 

adding labels to indicate which derivative was used. 
n  There are 8 copies of each diagram (4! matches between δ and 

source, divided by three diagrams), which cancels the symmetry 
factor.  So, overall symmetry factor is one. 
¨  In fact, all tree diagrams with the sources stripped off and the endpoints 

labeled have an overall symmetry factor of one.   
n  This last diagram is often drawn with  

the right propagators crossed, but this is  
not a third vertex: 
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Correlation Functions, Cntd. 

n So, we’ve shown that: 

n Using the tree-level diagrams, we can 
calculate that: 



The LSZ Formula, again 

n Now let’s take this result and put it into 
the LSZ formula.  Lots of math later, we 
end up with: 

¨ Note that the delta function tells us that 4-
momentum is conserved, which is good. 



The Feynman Rules 

n  But that sucked!  Do we really have to do that 
every time we want a scattering amplitude?   

n  No, we can instead define: 

 where the iτ is determined by the Feynman 
Rules 

 
The Feynman Rules will be different for each 

theory being considered 



The Feynman Rules for φ3
 Theory 

1.  Draw external lines for each incoming 
and outgoing particle. 

2.  Leave one end of these lines free.  The 
other end must be hooked up to a 
vertex, which joins three lines.  Internal 
lines may be drawn to do this.   

3.  Draw arrows: toward vertex for 
incoming, away from vertex for outgoing, 
in arbitrary direction for internal.   

4.  Assign each line a 4-momentum.  



The Feynman Rules for φ3
 Theory 

5.  Four momentum flows along the arrows, 
and must be conserved at each vertex.  
So, internal lines have constrained four-
momentum.   

6.  Assign your diagram a value: 
n  1 for each external line 
n  -i/(k2 + m2 – iε) for each internal line 
n  iZgg for each vertex 

7.  Any unfixed internal momenta must be 
integrated over, with measure d4l/(2π)4 



The Feynman Rules for φ3
 Theory 

8.  Divide the value by the symmetry factor 
associated with exchanges of internal 
propagators and vertices.   

9.  Include diagrams with the counterterm vertex 
that connects two propagators with the same 
4-momentum.   

n  The value of this vertex is –i((Zφ -1)k2
 + (Zm - 1)m2), 

and each is O(g2) because the Z’s are.    
10.  The value of iτ is the sum over all these 

diagrams.   



Tree-level φ3 Diagrams 
n  After the rules are applied, the diagrams look like 

this.  Notice the names. 

              s-channel              t-channel      u-channel 

n  Summing these diagrams, we find the matrix 
element (Srednicki writes it out; I won’t because 
there’s no obvious interpretation of it yet) 



Vertex Factors 
n  Srednicki’s treatment of vertices is terse, so I want to 

clarify:   

n  First, we said in the previous chapter that vertex 
factors usually include an integral.   
¨  In this chapter, and for the rest of time, we’ll interpret the 

integral to mean that a vertex can occur at any point in 
space.  That is obvious, so the integral is not included in the 
vertex factor.   

¨ Hence, the value of a diagram assumes that the vertex 
occurs at point x.  The LSZ formula, which essentially 
converts diagrams to scattering-amplitudes, will take care of 
the integration over all x. 



Vertex Factors 
n  In other words: 

¨  Chapter 9 was a mathematical chapter in which we showed the 
validity of the diagram expansion.  These diagrams necessarily 
included everything, including the spatial integrals. 

¨  Chapters 10 and beyond are physics chapters, in which it makes 
more sense to represent the diagram as it is physically drawn, 
and integrate over all possible physical representations of the 
diagram (ie all vertex positions) separately (ie in the LSZ 
formula) 

n  More technically: 
¨  The diagrams used to represent the path integral of the action, 

Z(J), also called the 0 -->0  transition amplitude 
¨  Now they represent the value of only one path – the one in the 

diagram.  By summing over all diagrams and integrating over all 
positions, the path integral is restored.     



Calculating Vertex Factors 
n  The procedure for determining vertex factors is a little 

ambiguous, so let’s specify it here: 

 where i sums over all the propagators in the vertex.   

n  Where does this come from?                   is the term in Z(J) 
represented by the vertices.  Once the three incoming 
propagators are removed by the partial derivative, the 
remainder is the value assigned to the vertex itself (there 
may also be a plane wave, but that can be ignored) 

n  Remember that Feynman Diagrams live in momentum 
space, hence the momentum derivative.   



Calculating Vertex Factors 

n  In practice, then, the vertex factor is 
found via the following algorithm: 

1.  Replace all derivatives with ik, with k positive 
for incoming particles. 

2.  Add a factor of i 
3.  Erase the fields 
4.  Multiply through by the symmetry factor of 

the vertex.   



Conclusions 

n We now have the scattering amplitude. 
¨ This procedure will work in general, but notice 

that our specific results – including our 
Feynman Rules – only work for φ3 theory. 

n Scattering amplitudes are not something 
that can be measured in a lab.  Our next 
step is to use scattering amplitudes to 
determine cross-sections, which can be 
experimentally measured. 


