
QFT 

Unit 1: Relativistic Quantum 
Mechanics 



What’s QFT? 
n Relativity deals with things that are fast 
n Quantum mechanics deals with things that 

are small 
n QFT deals with things that are both small 

and fast 
¨ What’s small and fast?  Elementary particles!  

We will deal with particles directly here. 



The Schrödinger Equation 
n Why can’t we just stick with quantum 

mechanics? 
¨ It’s not relativistic.  

n Why not? 
An axiom of QM is the Schrödinger Equation 



The Schrödinger Equation 
Let’s try a spinless particle with no forces acting 

on it.  In QM, the Schrödinger Equation 
becomes: 

 
 
In our case, we’ll use the relativistic formula 

instead: 
 
 
This seems fine, but not useful to have an operator 

under a square root! 



The Schrödinger Equation 
To make it useful, we’ll expand.  Let’s expand 

around c = ∞, since anything divided by many 
powers of c will be negligible.  Then, 

 
 
 
 

This is not consistent with relativity. 
•  Space and time treated differently 

•  Time derivative only on left, once 
•  Spatial derivative only on right, many times 

•  Nonlocal in space 
•  Infinite number of spatial derivatives (in the momentum oper) 



The Klein-Gordon Equation 
n  So much for the Schrödinger equation.  But 

maybe we can do a quick fix?  Let’s go back to 
this equation: 

 but instead of expanding, we’ll square the 
operator. 
•  This is not mathematically valid.  But maybe by 

making this slight shift of axiom, the consequences 
won’t be too severe.   

 The result is the Klein-Gordon Equation 



The Klein-Gordon Equation 

n  Is this consistent with relativity? 
 Yes.  Two observers will agree on this equation. 

 
n  Is this consistent with quantum mechanics? 

No.  It doesn’t follow the Schrödinger Equation.  
Moreover, the norm of a state is not constant (so 
probability is not conserved). 

I’ll prove both of these claims in the attached 
document. 



The Dirac Equation 
n  Let’s make another attempt, this time just for 

spin-1/2 particles 

n  Is this consistent with QM? 
 Yes.  It’s just the Schrödinger Equation with a 
particular form of the Hamiltonian. 

 
n  Is this consistent with relativity? 

 Yes, provided that the  
following are true: 
 
Demonstrating this is outside the scope of this section. 



The Dirac Equation 
n  We’ve done it! An equation that is consistent 

with relativity and quantum mechanics. 

n  But, some problems. 
¨  The matrices should be 2x2, since they represent the two 

electron spins.  But there are not four 2x2 matrices that obey the 
anti-commutation relations! 3x3 is no good either, since the 
dimensionality must be even (see problem 1.1 for proofs of these 
statements).  So, must have 4x4 (or higher) dimensionality.  
What are the other two dimensions, physically? 

¨  Acting on a momentum eigenstate, the eigenvalues are E(p), 
E(p), -E(p), and -E(p).  There’s no ground state – any particle 
could emit photons to achieve successively lower energy states. 

n  Dirac postulated hole theory. 
¨  Haven’t dealt with bosons. 



The Dirac Equation 
n  So, two options: 

1.  Dirac Equation is wrong: quantum mechanics and relativity can’t be 
combined.  There is instead some “super-theory” which reduces to QM and 
Relativity in certain limits. 

2.  Dirac Equation is right, but has certain subtleties that need to be carefully 
considered.   

 

n  It turns out that the Dirac Equation is right.  Let’s write it 
here in a more compact way: 

 In this case p and α are 3-vectors; the three components of 
α, and also β are 4x4 vectors. 

n  We won’t be able to successfully interpret the Dirac 
Equation for a long time. 



Time & Space 
n  The problem with the Dirac Equation – and indeed with 

quantum mechanics – is this: 
¨  Position is an operator 
¨  Time is a scalar label.  It is not the eigenvalue of any 

operator.   

 With time and space treated asymmetrically from the 
start, it is unsurprising that we have difficulty combining 
them into one equation! 

 

n  Two solutions: 
¨  Make position a label.  This is what we do in QFT by 

definition. 
¨  Make time an operator.  This works perfectly well, but it is 

difficult (since there is an infinite redundancy in any 
definition of proper time).  However, it suggests certain 
generalizations that are useful, for example in string theory. 



Time & Space 
n  In QFT, time and position are both simply labels.   

¨  Labels on what?  On operators! 
¨  Assign an operator to each point in spacetime – call that 

operator φ(x, t), with x and t just labeling which point is 
being referred to. 

n  Our task now is twofold: 
1) Write ordinary quantum mechanics as a quantum field 

theory. 
2) Make it relativistic. 



QFT of QM 
n  Take a quantum field a(x), defined by the commutation 
relations 

n  Now these fields will obey the Schrödinger Equation, 
where we have  

 
 
                                                



QFT of QM 
n  We will show in the problem 1.2 that if and only if this 
Schrödinger Equation is satisfied, then we have also satisfied 
the QM analog: 

n  It is easy to interpret a and a† as annihilation and creation 
operators respectively, and |0> as the vacuum.  Hence,  

    a|0> = 0.   

n  We can also define a number operator.   
This commutes with the Hamiltonian,  
(prbm. 1.3) and so it is conserved.  But, terms could be added 
to the Hamiltonian that don’t commute with N, and so number 
can change for processes with certain Hamiltonians (like decay 
processes). 



QFT of QM 
n  I will show later (easy to show) that only the symmetric part of Ψ will 
survive the integral in our definition of Ψ.  Hence, we’re so far 
discussing bosons, where the wave function is symmetric under particle 
interchange.   

n  For fermions, our relations are instead: 

And the wave function is antisymmetric under particle interchange 
 

n  No way to get Boltzmann statistics (which assume that quantum 
effects are negligible).   

¨  So, our course will deal with elementary particles directly, not 
with arbitrary fields made up of indeterminate particles. 



What’s next 
n  Next time:  

¨  Discuss Lorentz Invariance so that we know how to impose 
relativity on our QFT. 

n  Next few months:  
¨  Make our field theory compatible with relativity,  
¨  Describe spin-zero particles as completely and correctly as 

possible 

n  By the end of the year:  
¨  Generalize to spin-1/2 and spin-1  
¨  Construct the Standard Model of Particle Physics 


