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Abstract

We derive the expected lifetime of the muon, assuming only the Feynman Rules, Fermi’s Golden Rule, the Completeness
Relations (for Dirac Spinors), and the definition of the v matrices (anti-commutator). Negligible masses or momenta
are dropped. We then this result to estimate the tau lifetime, making an additional assumption of the CKM matrix.

1 Requisite Math

The v matrices are defined with the following anticommutation relation: {y*,~y"} = 2n*¥, where we take the Minkowski
metric to be " = diag(1,—1,—1,—1). We claim:

1. (/%) =1.
Proof.
From the anticommutation relations, 2y#yH* = 2nH#. Also,
1Py = —40914243409142~3  Anticommuting,
Y3y5 = =044yl 2424343 Now yHyH = n## (proven above), so:

vPy® = +1.
2. The trace of an odd number of v matrices is zero.
Proof.
As shown above, Tr(y'...yin) = Tr(75757“ ..*yi") where 7 is odd.
Using the cyclic property of the trace, Tr(y™..y) = Tr(y57%...yiny®)
Now, using the definition of 4° and the anticommutatmn relatlon.
V# =iy = —igky Py g2 = =P

Hence, anticommuting +° through an odd number of v matrices gives:

Tr(y"..4'm) = =Tr(v*y°y%..40) = =Tr(y%..4)
Hence, Tr(y%...y') = 0.

3. Tr(y"y"yP27) = 4" 0P — "% + nl7n").
Proof.
By cyclic property of trace, Tr(y*v"v?y7) = Tr(y"v°y° ")
Anticommutating, Tr(y*y*v°y7) = 207 Tr(yY+P) — Tr(yYyPy*~7)
Anticommutating, T'r(y"y"y?7) = 297" Tr(y"+") — 2n°"T T(’y”v") + Tr(y"y"y"~7)
Anticommutating, Tr(y*y*v°y7) = 207 Tr(y"+*) — 277”“Tr( YY)+ 29V HTr (4P ) — Tr (v~ 4P7)
Simplifying: Tr(y"5"v°y7) = n7*Tr (") — 9 Tr(y" )+n”“TT(7”7")
Now notice that Tr(y*y%) = 2Tr(v*7°) + 3Tr(v*7%) = %Tr({’yp,'y"}) = 4nr°
Hence, Tr(#9"yPy7) = (" nP7 — P07 + 0" n*P)

4. Tr(yHayYyPyo~5) = 4ighvro.
Proof.
First, note that it follows from the anticommutation relations that 'y = 1.
Then, Tr(y#9"7%) = Tr(y"y"v#4y°) = Tr(y'v#+"7°y"), where i # p and i # v
We showed before that 4° anticommutes with everything, and 7% will clearly commute with any gamma matrix to



which it is not equal. Hence, we anticommute three times, proving that Tr(y*y*+®) = 0.

Now consider Tr(y#y"Py°~5). If any of these are equal, then we can commute to recover the situation above,
and the answer is zero. If all four gammas appear, then the sign of our answer must change if two indices are
swapped, due to anticommutation relations. Hence, Tr(y*y"vfy°~5) = keHP?, where k is a proportionality con-
stant.

To determine the proportionality constant, consider Tr(y°y1y2v345) = ke¥123 = kn0ntln22133¢q193 = —k. Further,
Tr(799'92y3~%) = —iTr(v%~%) = —iTr(I) = —4i. Thus, —k = —4i = k = 44, which proves the claim.

Further, we claim that if we have a symmetric matrix S and antisymmetric matrices A, then M* M,,,, = (S*+A") (S +
A)=5"S,, +AA,,.

Proof.

M" M, =S*S,, + A" A, + S A + A*S,,
Now p and v are dummy indices, so let’s switch them:
M*" M, =SS, +A" A, +S"A,, + A"S,,
Now we can switch back: S can switch “free of charge”; A can switch, at the “cost” of a minus sign. Then,
M"M,, =S"S,,, +AWA, —SHA, —A"S,,
Equating two of these results, we have proven that:
SHS,, + A A, — SMA,, — AMS,, = MY M, = S*S,, + A" A, + S AL + AMS,,

This implies:
—(S* A, + A*S,,) = S*Y A, + AMS,,,

Hence,
SMVAIJ,U + ANVS/J,U =0

which implies:
M" M, = S*"S,, +A"A,

Finally, we claim that ey 14 = —204600f + 200 0ce-

Proof.

Using the definition of the Levi-Cevita Tensor, we can rewrite this as: 9%, . ¥

If a = c or e = f, then we are done.

There is a sum over b, d. The only terms that will contribute are the terms in which b, d choose the two values
that have not already been claimed by the other indices.

Hence, the contributing terms have either a = e and ¢ = f, or a = f and ¢ = e. That is:

bdac bd

g0 r = €240 Oae by + €290

5bdca5af5ce

Reversing the last two indices in the last term (at the cost of a minus sign) gives:

€bdac bd bdac

Ebdef = € acebdacéaeacf — € Ebdac(safé‘ce

The Levi-Cevita tensors are the same, but the superscript is different from the subscript by a factor of n%0n!tn225n33 =

for contributing terms. Hence, the product of the Levi Cevita Tensors gives -1. There are two contributing terms,
so:
Ebdacsbde‘f = _26a66cf + 26af5(:e



2 Muon Decay Lifetime Calculation
The decay process is p — e + Ve +v,,.

We'll do our labeling with subscripts. We’ll define the muon as particle 1, the muon neutrino as particle 2, the elec-
tron neutrino as particle 3, and the electron as particle 4.

Let’s construct .# using the Feynman Rules.
1. 14, since the presented Feynman rules are for —i.# .

2. The W~ propagator:
o i(g/w - pupl/)
p? — M,
Since My is so large, we can simplify to: .
i9uw
M,

3. Vertex 1. One particle (the muon, k1) is going toward the vertex, so it is represented with u; the other particle (the
vy, ko) is going away from the vertex, so it is represented with @. The vertex factor is:

(ks 52) (i\%y“;(l - 75)> u(ki, 51)

4. Vertex 2. One particle (the electron, k4) is going away from the vertex, so it is represented with @; the antiparticle
(the 7., k3) is also going away from the vertex, so it is represented with v (the convention for u and v is opposite).
The vertex factor is:

T(ka, 54) (-i\%y/;u - 75)) v(ks, 53)

5. The external lines contribute nothing beyond the spinors already included.

Multiplying all these together, we are left with:

=i ey 5) (i\gﬁw;u - 75)> u(ky, s1)a(ka, 54) (i\%%iu - 75)> ks, 53)

Our four factors of ¢ and two negative signs all cancel:

M= %ﬂ(kg,sﬁ <5§7“;(1 - 75)> u(ky, s1)u(ka, 54) (\%7";(1 - 75)) v(k3, 53)

Bringing the constants to the front gives:

2

M = %guyﬂ(kg, 52) V(1 — ") u(ky, s1)t(kg, 52)7" (1 — ) v(ks, s3)
8Myg,
Let’s take the usual definition of G:
G _ ¢
V2 8ME,

This gives:
G
M = —=gu ks, s2)7" (1 — " )ulky, s1)u(ka, s4)7" (1 — 7°)v(ks, s3)

V2

We’ll use the metric to lower the second ~*:

M = \C/;Eu(kév 82)’}/”(1 - Vs)u(klv Sl)ﬁ(kélv 84)’Yp.<1 - ’)/5)’0(163, 53)

Finally, we’ll temporarily suppress the spin indices:

A = ) (1=l k), (1 =97



The Hermitian conjugate of this is given by .#7:

= \% ((k2)y" (1 = 7)o (a1 = 7°)0(ks))|

Distributing the Hermitian conjugate gives:

M= \%v(ks)T(l — ) ke u(k) (1 = 4°) Iy Ta(ks)T

1" =1 and 4° = 4, so:

M= 21)(1@,)*(1 — ) vha(ks) (k)T (1 = %)y Ta(ky) T

7299 =1, so let’s insert a few ~s.
G
MY = T@v(kz)*’yovo(l — V) ia(ka) (k)T (1 = A7)y (ks

vTy? = 7. Hence,

' = (ka1 =2l )2 (1 = 27 (k)

Distributing the remaining ~%s:

= x%“(/fg)(vo — 0yl ka) (R ) (70 = 209 °) T (k)T

~® anticommutes with the other s, hence:

G
MY = —=5(k3)(7° + 1) a(ka) (k) (10 +4°7°0)y T (ks

V2

Again factoring out the 7s, we have:

Y = Sk (1497 ) ) (14 00 (k)

We place in two more copies v%4°. Thus:

G _ o _ —
M = Z50(ks) (L ")y oy k) k) (L4 7))

We note now that y*f = 499#~9 Multiplying on the left and the right by 7°, we find that v* = 4%9#f40. This leads to:

G
M= ﬁﬂ(ks)(l + )Y A0 u(ka) T (ky ) (1 + 2 )y (ke

The previous fact can be used again if we multiply both sides by the metric. Then,

A = i) (1479 ) )1+ 0 )

As noted before, 7@ = ufy?. We dagger both sides to find:
at = (ui®)T = 40Tyt — 40y
Multiplying both sides of that by v° on the left gives:
A0gT = 4040y = 4

Finally, we use this identity in our expression for .#* to obtain:

M= \%v(kg)(l + V) (ks )u(kr) (14 ~°) 7" u(ka)



Now we are ready to put these together and obtain our amplitude squared:
AR AV 4

which gives:

] = %vu@g)(l A Yty (1 + 75>wu<k2>5§u<km”<l Yl ks v (1 — 2%)o(ks)

Bringing the constants to the front:

|.#)* = %2@(/63)(1 + 97 mu(ka) (k) (L +9°) 7 u(ka)t(k2)y" (1 = *)ulky)a(ka) o (1 = 9”)o(ks)

This is almost a good expression, but it remains to take care of the spins.

1. Average over initial spins (s1). The muon in question has exactly one spin out of the the two possibilities, so we will
take the average of both. This means summing over the two and then dividing by two.

2. Sum over the final spins (s2, s3, 84). The particles in question can decay into a number of final states; each possibility
opens up new channels, causing the particle to decay faster (ie increasing the amplitude).

Hence, we will sum over all four spins and divide by %

G2

2
e ==

Y k) (147 yuulka)a(k) (1 + 2"y ulkz)a(ke)y" (1 =5 ulk: Ja(ka) 7 (1 = 7°)o(ks)

$1,52,53,54

The middle portion of this equation is the most interesting. Let us consider that part separately:

GQ

2
P ==

D olks) (L7 ) yuulka) | D alk) (L 497 ulke)u(kz)y” (1 - 75)U(k1)] (ka) v (1 = 7")v(ks)

53,84 S1,52

These are essentially a bunch of matrices and spinors multiplied together, so let’s write this in index notation. For
convenience, we’ll use Latin letters:

|2 %2 > B(ks) L+ ) ypulka) | Y alky)a [(1+4°)9"],, ulka)pti(ke)e (77 (1 =~7)] U(iﬁ)d] U(ka)y (1 =~°)v(ks)

83,84 LS1,52

Now we don’t have to worry about commutation, so we can write:

2
O N Bk 1+ k) | 3 ki) [(1+ 40 o)) [y (1 ﬂ]cd] (k1) (1 = 7 Yo(ks)

83,84 LS1,52

| |?

Note that this has the same index at the beginning and the end, which is the trace.

A = %2 (k) (147 yeulka) | D Tr (ulka)a(k) (L + ") ulke)a(kz)y” (1 - 75))] (ka) v (1 —7°)v(ks)

83,84 51,52

Let’s use the completeness relation, > w(k1,s1)u(ki,s1) =41 +m and >, = ka. Then,

G2

2
e ==

> B(ks) (1 + %) yulla) Tr [+ m)(L+ ") k2y” (1= ~°)] W(ka)yo (1 = 7°)v(ks)
83,54
The trace is now irrelevant to the rest of the problem, so we’ll move it in front:

2

A2 = %TT [ +m) (L + 777" k2y”(1=7°)] Y 0lka) (1 + 7 )yuu(ka)a(ka)r (1 = 7 )u(ks)

53,54



In the same way, we convert the remaining sum to a trace:

14T = GTTT [(Av+m) (A + 700" 2y (L= 4")] Tr [Bs(L+9) 9 Eay (1= 7))

~* and +® anti-commute, so we can rewrite this:

L 2
T = ST [y m)y (1= 7%) e (1= )] Tr [Rsru(L = %) A1 =)

Rearranging again, we find:

A2 = %Tr [V*(1 =) k27" (1 = °) (k1 +m)] Tr [y, (1 = 4°) kav (1 —~°) k3]

Interestingly enough, the mass terms vanish! To see this, let’s take the first trace and distribute the first five terms into
the sixth:

L 2
|)? = %TT [V (1 =7%) kv (1 =~°) k1 +9"(1 =~°) kav" (1 = ¥°)m)] Tr [y (1 = %) kavo(1 —~°) ks]

Traces are linear, so:

L 2
A = % (Tr [v*(1=7°) kv (1 =7°) k] +Tr [v*(1 = 7°) k" (1 =~°)m)]) Tr [ (1 = 2°) kayo(1 —7°) ks]

Consider this second term. Let’s do the long multiplication:
Tr[y"(1=9°) k" (1 =A")m)] = Tr[y* kay"m] —Tr [v*5° kov"m] —Tr [v* koy"y°m)] + T [v#9° koy"y°m)]

All these terms have an odd number of gamma matrices (recall that 4 has four gamma matrices inside it), so this vanishes,
leaving:

[.4]? = %QTT [7(1 =) k27" (1 =) ] Tr [vu(1 =) kann(1 =) ]
Consider this first trace. Multiplying out the binomials, we have:
Tr [y (1 =9°) k2y"(1=7°) ka] = Try" k" Fa] = Tr [y"9° k2y” k] = Tr [v" k2" ku] +Tr [v"9° kay® f]
Remembering that 4 = a,v*, we can anticommute the v° terms in the third and fourth terms, obtaining:
Tr [y (1 =9°) k2" (1=7°) k] = Triy" koy" k] = Tr [v"9° koy” Ja] = Tr [v'9° ko” Ka] +Tr [Y'9°7° koy” fa]
Since (v°)? = 1, two of these terms combine:
Tr (Y (1 =) k2y"(1=9°) k] = 2Tr [y k" Fa] = 217 [Y'5° kv fu]
Using the cyclic property of the trace, and also the definition of 4, we have:
Tr [y (1 =) k2" (1 =) k] = 2kiakapTr [v"77"7"] = 2krakosTr [Y777709H°]
Now we can use the identities we determined previously:
Tr [y"(1 = 4°) kv (1 =7°) k1] = 8kiakos ("0 — 0P 4+ ntPn™) — 8k kogic
which is:
Tr [y*(1 - %) kav" (1 —7°) k) = 8k1akapn 0P — 8k1akapn 0P + 8k1akosn' PN — 8kiokopic?H
Since the metric is diagonal:
Tr [y"(1=2°) kv’ (1 =°) k1] = 8kiukaun* 0" — 8kiakasn™ n™® + 8k1ykaunn”” — 8kiakagic”

Simplifying:
Tr [v4(1 = %) kav"(1 —~°) k1] = 8Kk — 8(ky - ko)™ + 8KV kly — 8k kopic” "



Now we want to consider
Tr [y (1 =7°) k" (1 =7°) k] Tr [vu(1 = 2°) kav (1 =1°) ks] =

(8KYKY — 8(Ky - ko)™ + 8k{ kY — 8kiakagie? ") (8kaukay — 8(ks - ka)nuw + Skaukay, — 8k kSi€s0y)

In each of these, the first three terms are even and the last is odd. As we showed in previously, we can multiply these
separately. Hence,

Tr [y (1 =7°) k" (1 =7°) k] Tr [y, (1 = 7°) kav(1 =7°) ks] =
(84 kY — 8(ky - ko) + 8KV k) (8kaykay — 8(k3 - ka)uy + Skzykay) — 64k10kose® Pk kS5,

Multiplying both sides by the necessary constants, we can simplify this as:

G2
[ A ? = = [(8kyk5 — 8(ky - ko) + Bh{KS) (8kauka — 8(ks - ka)nyus + 8kgukay) — 64k1akopks ke s, ]

Simplifying,
]2 = 16G? (kiKY — (k1 - ko)™ + kYK (kspkay — (ks - ka) i + ksvkap) — krakosk] k3 * sy, ]
Doing the long multiplication, the terms in parenthesis become:
(k1 - k3) (ko - kg) — (k1 - ko) (k3 - ka) + (k1 - ka) (k2 - k3) — (k1 - k2) (ks - kg) + 4(k1 - k2) (k3 - ky)
—(k1 - k2)(ks - ka) + (k1 - k3) (k2 - ka) — (kv - k2) (ks - ka) + (k1 - ka) (k2 - ks3)

Combining similar terms, this reduces, giving:
|2 =16G? [2(k1 - k3) (K2 - ka) + 2(k1 - ka) (ko - k3) — kiakoghdk§e® e sy,

The Levi-Cevita tensor expands as shown above, giving:

| |2 = 16G? [2(ky - k3) (k2 - ka) + 2(Kk1 - ka) (k2 - k3) + 2k1ak25k] k305500~ — 2k1akaskd k30500

Hence,
[ #)2 = 16G? [2(ky - k3) (ko - ka) 4 2(k1 - ka) (Ko - k) + 2(ky - k3) (ko - k) — 2(k1 - ka) (Ko - k3)]

Some terms cancel, leaving:

|2 = 64G? (k1 - k) (k2 - ks)
Now we are ready to consider the infinitesimal decay rate. By definition,
dl' = |.#2dLIPS
Plugging in both the invariant amplitude and the expression for the phase space, we have:

d3ks d3ks d3ky
(27T)32Ek2 (27T)32Ek3 (27T)32Ek4

dr (64G? (k1 - k3) (ks - k1)) (2m)26% (ky — ko — ks — ky)

1
- 2m
Bringing the constants to the front,

G? d3ky ks d®ky
dl’ = k1 -k3)(ks - k —_—
(ks - o) (kz - k) Eyo Eiz Eja

~ 8mwd

6 (ky — ko — k3 — k)

Let’s break apart the delta function into energy and momentum components. We work in the center of mass frame, where
the muon’s energy is its mass. The remaining particles have essentially no mass, so their energy is the opposite of their

momentum. @ Bl &l &P
((ky - k3) (ko - ky)) o2 2 21
k2| ks| |kal

Note that in the muon rest frame, k1 = (m,0,0,0). Then, k; - k3 = mEs3, and

dT §(m — |ka| — |ks| — |ka)|0° (k2 + ks + ka)

8mmd

G? d3ky k3 A3k
(ke kmpy T L
ma (k2| [k3| [kl

dT = §(m — |ka| — |ks| — |ka)]0° (k2 + K3 + ka)



For the remaining dot product, consider:
(kg + ka)? = k2 4+ 2kg - ky + k2
Since we’ve neglected many masses, the four-vector magnitudes are zero:
(kg + kg)? = 2ko - ky
Remember that k1 = ko + k3 + k4, so:
(ko 4+ ky)? = 2ko - by = (k1 — k3)* = k7 — 2k - ks + k3

The muon is at rest in this frame, and the everything else has a four-magnitude of zero, so:

2ky - kg = m* — 2mE;
Hence,

G2

= 16mno

d3ks d3ks d3k
((m® — 2mEs)mE3) R

ar =— —=——
|ka| ks |K4]

5(m — |ka| — |ks| — |ka)|0% (s + ks + ka)
We clean up and also note that F3 = |E3|, s0:

dar' =

mG2|ks| ( = N\ dPky d3ks d3ky . -

ULy T |) 2888 T 5 — || — |Ks| — |Fa)|0% (Fy + s + Ky)
167 k2l [ks| [kal

It remains to do nine integrals. We'll start with the ko integral, using the delta function:

mG2|ks| ( R ‘) d3ksd3ky

M 5(m — |ks + k| — ks3] — |Ka)]
167° k3 + ka||ks|[kal

dl' =

It remains to do six integrals. Let’s switch k3 to polar coordinates:

dl' =

mG2|ks| (m - ) |ks|2sin(0)d|ks|dOdpd3ky

— 2[ks| S = 5(m — |Es + ka| — |ka| — |Fa)|
167 ks + kal[ks)||kal

We can rewrite this as:

dr — 8(m — |ks + ka| — |ks| — |ka)]

mG2|ks|? =\ sin(0)d|ks|dOdpd3ky
75 ( — 2|k3‘) = = =
167 |3 + kg ks

By the so-called “parallelogram addition rule” (a manifestation of the Law of Cosines), we can write:
|A+ B> = |A]? + |B|* + 2|A|| B|cos(6)
Hence, with the axis defined along the k4 particle’s momentum, we write:

mG?2|ks|? sin(0)d|ks|d0dpd3k,

— (mf2|1§3) o e —5(m — |k + ka| — |E3| — |&4)]
™ (1%512 + [E3[2 + 21| [ilcos(6) ) ||

I’ =

We now perform the ¢ integral:

mG2| ks |? sin(0)d|ks|dOd3ky

(=2l ) o ——§(m — |5 + Fa| — Fs| — Fa)|
m (18512 + [Ral2 + 2131 ki cos(0) ) [l

ar' =

Five integrals left. Let’s switch variables:
u? = |ks|? + [ka|? + 2|k3||ka|cos(0)

Qudu = —2|ks||ka|sin(0)do



Then,

mG2|ks| =\ dud|ks|d3ky .
dfzi( —219)475 —u? — |k - |k
8l Ll TAE (m —u” — [ks| — |ka)]|
We now perform the u integral:
mG2|ks| =\ d|ks|dky .

What are the limits of integration? If § = 0, then u = \/\k;_§,|2 + |ka|? + 2|ks||k4|, which we will call uy. If @ = 7, then

u= \/\k;|2 + |ka|? — 2|ks]||ka|, which we will call u_. Hence, the u integral is one if:
u_ < m— |ks| — |k < uy
and zero otherwise. Factoring, we see that this condition is:
+(|Ks| — [Fal) < m — |Rs| — [Ra] < £(|Fs| + |Ea])

Taking the positive sign and solving the left inequality, we see that:
- m
|]€3| < 5
Taking the negative sign and solving the left inequality, we see that:
- m
ka| < )
Solving the right inequality (with the positive sign), we see that:
- - m
|ks| + |ka| > 5
We therefore note these constraints and take the value of the integral to be one, leaving:

2|f. = N\ d|ks|d3k
mG ‘ 3| (m—2|k3|) | 3| 4

dl = A
8 |k4)?

Rewritten a bit, we have four integrals left:

mG? N I
dr = ¢ (m - 2|k3\) |]_€,4‘2d|k3|d ks

Let’s do the \E5| integral next. From the constraints, we know that the upper limit is % while the lower limit is 5 — |E4\.

The integral is then:
mG? 1 - - .
T = 2 ——dhy [ K] (m — 2lRs|) dIF
e ol (m 20kl s

We evaluate the integral between those limits, to find:

mG? m 2|k
I = 3ka [ = —
aU =g d'ks (2 3

Three integrals left. We’ll again switch to polar coordinates: this time it is trivial to evaluate the 6 and ¢ components, so

we have: o
- mG? = o (m 2]k -
dl' = 5.3 |ka| <2 -3 d|ky4]

Let’s define E to be the electron energy, or |ky|. Then:
dl mG? g2 (m QE)

dE ~ 273

2 3



Rewriting a bit:

dE ~ 4r3
By the way, this is the energy distribution of the emitted electron. To figure out the most probable electron energy, we
simply take the derivative of the right hand side and set it equal to zero. We obtain

3m

272
dr mGE2<14E)

m
Eprob = 5

This is also the maximum energy. Note that the energy distribution at hand does not set the maximum energy of the
electron; that is an external constraint set by the delta function which was required by conservation of energy. At any

rate, we have:
212 = AE
p-mc< /2E2 1- =) dE
43 3m

Evaluating the integral, we obtain:

m2G? m3
T T4xd 48
which is:
r— m>G?
19273
The muon lifetime is the inverse of this, or:
19273
H—yeT
G =1.17%10"5 GeV~2 and m = .1056584 GeV. Hence,
19273
r= 92m ~ =330 x 101¥GeV ™!

(.1056584 GeV)5(1.17 x 10=5 GeV~?)
To get to seconds, multiply by Planck’s constant, & = 6.58 x 1072° Gev s.
T=217us

This differs from the experimental value by only 1.2%. The only significant source of error is our approximation that all
masses are negligible except that of the p, and that all momenta are neglible compared to the mass of the W boson.

3 Tau Lifetime

Let’s consider the decay modes of the 7:
T pu+v,+vr

T — e+ Ve + Vs
T —d+u+ v, (3 colors)
T — s+ U+ v, (3 colors)

The 7 therefore has 8 decay modes, where the p has only one. The leptonic decay modes are equally likely (up to the
mass of the lepton, which we neglected). The hadronic decay modes have a probability of 3|V,q|? + 3|V.s|? = 2.99. Hence,
the 7 is 4.99 times as likely to decay as the u, just due to the sum over all final states.

The other issue is that the 7 is much heavier (by a factor of 16.82) than the p. Combining these effects, we have:

lifetime,,

_ —13
199(16.82)7 ~ > 10T

lifetime, =
Where we used the lifetime of the muon calculated above. This differs from the experimental value by about 11.1%.
The only significant source of error is our approximations that all masses are negligible except that of the 7, and that
all momenta are neglible compared to the mass of the W boson. In fact, the 7 is only 16 times heavier than the pu.
Additionally, there may be a form factor in the hadronic final states.
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