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Abstract

We derive the expected lifetime of the muon, assuming only the Feynman Rules, Fermi’s Golden Rule, the Completeness
Relations (for Dirac Spinors), and the definition of the γ matrices (anti-commutator). Negligible masses or momenta
are dropped. We then this result to estimate the tau lifetime, making an additional assumption of the CKM matrix.

1 Requisite Math

The γ matrices are defined with the following anticommutation relation: {γµ, γν} = 2ηµν , where we take the Minkowski
metric to be ηµν = diag(1,−1,−1,−1). We claim:

1. (γ5)2 = 1.
Proof.
From the anticommutation relations, 2γµγµ = 2ηµµ. Also,
γ5γ5 = −γ0γ1γ2γ3γ0γ1γ2γ3. Anticommuting,
γ5γ5 = −γ0γ0γ1γ1γ2γ2γ3γ3. Now γµγµ = ηµµ (proven above), so:
γ5γ5 = +1.

2. The trace of an odd number of γ matrices is zero.
Proof.
As shown above, Tr(γi1 ...γin) = Tr(γ5γ5γi1 ...γin), where n is odd.
Using the cyclic property of the trace, Tr(γi1 ...γin) = Tr(γ5γi1 ...γinγ5)
Now, using the definition of γ5 and the anticommutation relation:

γ5γµ = iγ0γ1γ2γ3γµ = −iγµγ0γ1γ2γ3 = −γµγ5

Hence, anticommuting γ5 through an odd number of γ matrices gives:

Tr(γi1 ...γin) = −Tr(γ5γ5γi1 ...γin) = −Tr(γi1 ...γin)

Hence, Tr(γi1 ...γin) = 0.

3. Tr(γµγνγργσ) = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ).
Proof.
By cyclic property of trace, Tr(γµγνγργσ) = Tr(γνγργσγµ)
Anticommutating, Tr(γµγνγργσ) = 2ησµTr(γνγρ)− Tr(γνγργµγσ)
Anticommutating, Tr(γµγνγργσ) = 2ησµTr(γνγρ)− 2ηρµTr(γνγσ) + Tr(γνγµγργσ)
Anticommutating, Tr(γµγνγργσ) = 2ησµTr(γνγρ)− 2ηρµTr(γνγσ) + 2ηνµTr(γργσ)− Tr(γµγνγργσ)
Simplifying: Tr(γµγνγργσ) = ησµTr(γνγρ)− ηρµTr(γνγσ) + ηνµTr(γργσ)
Now notice that Tr(γργσ) = 1

2Tr(γ
ργσ) + 1

2Tr(γ
ργσ) = 1

2Tr({γ
ρ, γσ}) = 4ηρσ

Hence, Tr(γµγνγργσ) = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ)

4. Tr(γµγνγργσγ5) = 4iεµνρσ.
Proof.
First, note that it follows from the anticommutation relations that γiγi = 1.
Then, Tr(γµγνγ5) = Tr(γiγiγµγνγ5) = Tr(γiγµγνγ5γi), where i 6= µ and i 6= ν
We showed before that γ5 anticommutes with everything, and γi will clearly commute with any gamma matrix to
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which it is not equal. Hence, we anticommute three times, proving that Tr(γµγνγ5) = 0.

Now consider Tr(γµγνγργσγ5). If any of these are equal, then we can commute to recover the situation above,
and the answer is zero. If all four gammas appear, then the sign of our answer must change if two indices are
swapped, due to anticommutation relations. Hence, Tr(γµγνγργσγ5) = kεµνρσ, where k is a proportionality con-
stant.

To determine the proportionality constant, consider Tr(γ0γ1γ2γ3γ5) = kε0123 = kη00η11η22η33ε0123 = −k. Further,
Tr(γ0γ1γ2γ3γ5) = −iT r(γ5γ5) = −iT r(I) = −4i. Thus, −k = −4i =⇒ k = 4i, which proves the claim.

Further, we claim that if we have a symmetric matrix S and antisymmetric matrices A, then MµνMµν = (Sµν+Aµν)(Sµν+
Aµν) = SµνSµν +AµνAµν .

Proof.
MµνMµν = SµνSµν +AµνAµν + SµνAµν +AµνSµν

Now µ and ν are dummy indices, so let’s switch them:

MµνMµν = SνµSνµ +AνµAνµ + SνµAνµ +AνµSνµ

Now we can switch back: S can switch “free of charge”; A can switch, at the “cost” of a minus sign. Then,

MµνMµν = SµνSµν +AµνAµν − SµνAµν −AµνSµν

Equating two of these results, we have proven that:

SµνSµν +AµνAµν − SµνAµν −AµνSµν = MµνMµν = SµνSµν +AµνAµν + SµνAµν +AµνSµν

This implies:
−(SµνAµν +AµνSµν) = SµνAµν +AµνSµν

Hence,
SµνAµν +AµνSµν = 0

which implies:
MµνMµν = SµνSµν +AµνAµν

Finally, we claim that εabcdεebfd = −2δaeδcf + 2δafδce.
Proof.

Using the definition of the Levi-Cevita Tensor, we can rewrite this as: εbdacεbdef .
If a = c or e = f, then we are done.
There is a sum over b, d. The only terms that will contribute are the terms in which b, d choose the two values

that have not already been claimed by the other indices.
Hence, the contributing terms have either a = e and c = f, or a = f and c = e. That is:

εbdacεbdef = εbdacεbdacδaeδcf + εbdacεbdcaδafδce

Reversing the last two indices in the last term (at the cost of a minus sign) gives:

εbdacεbdef = εbdacεbdacδaeδcf − εbdacεbdacδafδce

The Levi-Cevita tensors are the same, but the superscript is different from the subscript by a factor of η00η11η22η33 =
−1

for contributing terms. Hence, the product of the Levi Cevita Tensors gives -1. There are two contributing terms,
so:

εbdacεbdef = −2δaeδcf + 2δafδce
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2 Muon Decay Lifetime Calculation

The decay process is µ→ e+ νe + νµ.

We’ll do our labeling with subscripts. We’ll define the muon as particle 1, the muon neutrino as particle 2, the elec-
tron neutrino as particle 3, and the electron as particle 4.

Let’s construct M using the Feynman Rules.

1. i, since the presented Feynman rules are for −iM .

2. The W− propagator:

− i(gµν − pµpν)

p2 −M2
W

Since MW is so large, we can simplify to:
igµν
M2
W

3. Vertex 1. One particle (the muon, k1) is going toward the vertex, so it is represented with u; the other particle (the
νµ, k2) is going away from the vertex, so it is represented with u. The vertex factor is:

u(k2, s2)

(
−i g√

2
γµ

1

2
(1− γ5)

)
u(k1, s1)

4. Vertex 2. One particle (the electron, k4) is going away from the vertex, so it is represented with u; the antiparticle
(the νe, k3) is also going away from the vertex, so it is represented with v (the convention for u and v is opposite).
The vertex factor is:

u(k4, s4)

(
−i g√

2
γν

1

2
(1− γ5)

)
v(k3, s3)

5. The external lines contribute nothing beyond the spinors already included.

Multiplying all these together, we are left with:

M = i
igµν
M2
W

u(k2, s2)

(
−i g√

2
γµ

1

2
(1− γ5)

)
u(k1, s1)u(k4, s4)

(
−i g√

2
γν

1

2
(1− γ5)

)
v(k3, s3)

Our four factors of i and two negative signs all cancel:

M =
gµν
M2
W

u(k2, s2)

(
g√
2
γµ

1

2
(1− γ5)

)
u(k1, s1)u(k4, s4)

(
g√
2
γν

1

2
(1− γ5)

)
v(k3, s3)

Bringing the constants to the front gives:

M =
g2

8M2
W

gµνu(k2, s2)γµ(1− γ5)u(k1, s1)u(k4, s4)γν(1− γ5)v(k3, s3)

Let’s take the usual definition of G:
G√

2
=

g2

8M2
W

This gives:

M =
G√

2
gµνu(k2, s2)γµ(1− γ5)u(k1, s1)u(k4, s4)γν(1− γ5)v(k3, s3)

We’ll use the metric to lower the second γν :

M =
G√

2
u(k2, s2)γµ(1− γ5)u(k1, s1)u(k4, s4)γµ(1− γ5)v(k3, s3)

Finally, we’ll temporarily suppress the spin indices:

M =
G√

2
u(k2)γµ(1− γ5)u(k1)u(k4)γµ(1− γ5)v(k3)
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The Hermitian conjugate of this is given by M †:

M † =
G√

2

(
u(k2)γµ(1− γ5)u(k1)u(k4)γµ(1− γ5)v(k3)

)†
Distributing the Hermitian conjugate gives:

M † =
G√

2
v(k3)†(1− γ5)†γ†µu(k4)†u(k1)†(1− γ5)†γµ†u(k2)†

1† = 1 and γ5† = γ5, so:

M † =
G√

2
v(k3)†(1− γ5)γ†µu(k4)†u(k1)†(1− γ5)γµ†u(k2)†

γ0γ0 = 1, so let’s insert a few γ0s.

M † =
G√

2
v(k3)†γ0γ0(1− γ5)γ†µu(k4)†u(k1)†γ0γ0(1− γ5)γµ†u(k2)†

v†γ0 = v. Hence,

M † =
G√

2
v(k3)γ0(1− γ5)γ†µu(k4)†u(k1)γ0(1− γ5)γµ†u(k2)†

Distributing the remaining γ0s:

M † =
G√

2
v(k3)(γ0 − γ0γ5)γ†µu(k4)†u(k1)(γ0 − γ0γ5)γµ†u(k2)†

γ5 anticommutes with the other γs, hence:

M † =
G√

2
v(k3)(γ0 + γ5γ0)γ†µu(k4)†u(k1)(γ0 + γ5γ0)γµ†u(k2)†

Again factoring out the γ0s, we have:

M † =
G√

2
v(k3)(1 + γ5)γ0γ†µu(k4)†u(k1)(1 + γ5)γ0γµ†u(k2)†

We place in two more copies γ0γ0. Thus:

M † =
G√

2
v(k3)(1 + γ5)γ0γ†µγ

0γ0u(k4)†u(k1)(1 + γ5)γ0γµ†γ0γ0u(k2)†

We note now that γµ† = γ0γµγ0. Multiplying on the left and the right by γ0, we find that γµ = γ0γµ†γ0. This leads to:

M † =
G√

2
v(k3)(1 + γ5)γ0γ†µγ

0γ0u(k4)†u(k1)(1 + γ5)γµγ0u(k2)†

The previous fact can be used again if we multiply both sides by the metric. Then,

M † =
G√

2
v(k3)(1 + γ5)γµγ

0u(k4)†u(k1)(1 + γ5)γµγ0u(k2)†

As noted before, u = u†γ0. We dagger both sides to find:

u† = (u†γ0)† = γ0†u†† = γ0u

Multiplying both sides of that by γ0 on the left gives:

γ0u† = γ0γ0u = u

Finally, we use this identity in our expression for M † to obtain:

M † =
G√

2
v(k3)(1 + γ5)γµu(k4)u(k1)(1 + γ5)γµu(k2)
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Now we are ready to put these together and obtain our amplitude squared:

|M |2 = M †M

which gives:

|M |2 =
G√

2
v(k3)(1 + γ5)γµu(k4)u(k1)(1 + γ5)γµu(k2)

G√
2
u(k2)γν(1− γ5)u(k1)u(k4)γν(1− γ5)v(k3)

Bringing the constants to the front:

|M |2 =
G2

2
v(k3)(1 + γ5)γµu(k4)u(k1)(1 + γ5)γµu(k2)u(k2)γν(1− γ5)u(k1)u(k4)γν(1− γ5)v(k3)

This is almost a good expression, but it remains to take care of the spins.

1. Average over initial spins (s1). The muon in question has exactly one spin out of the the two possibilities, so we will
take the average of both. This means summing over the two and then dividing by two.

2. Sum over the final spins (s2, s3, s4). The particles in question can decay into a number of final states; each possibility
opens up new channels, causing the particle to decay faster (ie increasing the amplitude).

Hence, we will sum over all four spins and divide by 1
2 .

|M |2 =
G2

4

∑
s1,s2,s3,s4

v(k3)(1 + γ5)γµu(k4)u(k1)(1 + γ5)γµu(k2)u(k2)γν(1− γ5)u(k1)u(k4)γν(1− γ5)v(k3)

The middle portion of this equation is the most interesting. Let us consider that part separately:

|M |2 =
G2

4

∑
s3,s4

v(k3)(1 + γ5)γµu(k4)

[∑
s1,s2

u(k1)(1 + γ5)γµu(k2)u(k2)γν(1− γ5)u(k1)

]
u(k4)γν(1− γ5)v(k3)

These are essentially a bunch of matrices and spinors multiplied together, so let’s write this in index notation. For
convenience, we’ll use Latin letters:

|M |2 =
G2

4

∑
s3,s4

v(k3)(1 + γ5)γµu(k4)

[∑
s1,s2

u(k1)a
[
(1 + γ5)γµ

]
ab
u(k2)bu(k2)c

[
γν(1− γ5)

]
cd
u(k1)d

]
u(k4)γν(1− γ5)v(k3)

Now we don’t have to worry about commutation, so we can write:

|M |2 =
G2

4

∑
s3,s4

v(k3)(1 + γ5)γµu(k4)

[∑
s1,s2

u(k1)du(k1)a
[
(1 + γ5)γµ

]
ab
u(k2)bu(k2)c

[
γν(1− γ5)

]
cd

]
u(k4)γν(1− γ5)v(k3)

Note that this has the same index at the beginning and the end, which is the trace.

|M |2 =
G2

4

∑
s3,s4

v(k3)(1 + γ5)γµu(k4)

[∑
s1,s2

Tr
(
u(k1)u(k1)(1 + γ5)γµu(k2)u(k2)γν(1− γ5)

)]
u(k4)γν(1− γ5)v(k3)

Let’s use the completeness relation,
∑
s1
u(k1, s1)u(k1, s1) =6 k1 +m and

∑
s2

= 6 k2. Then,

|M |2 =
G2

4

∑
s3,s4

v(k3)(1 + γ5)γµu(k4)Tr
[
( 6 k1 +m)(1 + γ5)γµ 6 k2γν(1− γ5)

]
u(k4)γν(1− γ5)v(k3)

The trace is now irrelevant to the rest of the problem, so we’ll move it in front:

|M |2 =
G2

4
Tr
[
(6 k1 +m)(1 + γ5)γµ 6 k2γν(1− γ5)

] ∑
s3,s4

v(k3)(1 + γ5)γµu(k4)u(k4)γν(1− γ5)v(k3)
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In the same way, we convert the remaining sum to a trace:

|M |2 =
G2

4
Tr
[
(6 k1 +m)(1 + γ5)γµ 6 k2γν(1− γ5)

]
Tr
[
6 k3(1 + γ5)γµ 6 k4γν(1− γ5)

]
γµ and γ5 anti-commute, so we can rewrite this:

|M |2 =
G2

4
Tr
[
(6 k1 +m)γµ(1− γ5) 6 k2γν(1− γ5)

]
Tr
[
6 k3γµ(1− γ5) 6 k4γν(1− γ5)

]
Rearranging again, we find:

|M |2 =
G2

4
Tr
[
γµ(1− γ5) 6 k2γν(1− γ5)(6 k1 +m)

]
Tr
[
γµ(1− γ5) 6 k4γν(1− γ5) 6 k3

]
Interestingly enough, the mass terms vanish! To see this, let’s take the first trace and distribute the first five terms into
the sixth:

|M |2 =
G2

4
Tr
[
γµ(1− γ5) 6 k2γν(1− γ5) 6 k1 + γµ(1− γ5) 6 k2γν(1− γ5)m)

]
Tr
[
γµ(1− γ5) 6 k4γν(1− γ5) 6 k3

]
Traces are linear, so:

|M |2 =
G2

4

(
Tr
[
γµ(1− γ5) 6 k2γν(1− γ5) 6 k1

]
+ Tr

[
γµ(1− γ5) 6 k2γν(1− γ5)m)

])
Tr
[
γµ(1− γ5) 6 k4γν(1− γ5) 6 k3

]
Consider this second term. Let’s do the long multiplication:

Tr
[
γµ(1− γ5) 6 k2γν(1− γ5)m)

]
= Tr [γµ 6 k2γνm]− Tr

[
γµγ5 6 k2γνm

]
− Tr

[
γµ 6 k2γνγ5m)

]
+ Tr

[
γµγ5 6 k2γνγ5m)

]
All these terms have an odd number of gamma matrices (recall that γ5 has four gamma matrices inside it), so this vanishes,
leaving:

|M |2 =
G2

4
Tr
[
γµ(1− γ5) 6 k2γν(1− γ5) 6 k1

]
Tr
[
γµ(1− γ5) 6 k4γν(1− γ5) 6 k3

]
Consider this first trace. Multiplying out the binomials, we have:

Tr
[
γµ(1− γ5) 6 k2γν(1− γ5) 6 k1

]
= Tr [γµ 6 k2γν 6 k1]− Tr

[
γµγ5 6 k2γν 6 k1

]
− Tr

[
γµ 6 k2γνγ5 6 k1

]
+ Tr

[
γµγ5 6 k2γνγ5 6 k1

]
Remembering that 6 a = aαγ

α, we can anticommute the γ5 terms in the third and fourth terms, obtaining:

Tr
[
γµ(1− γ5) 6 k2γν(1− γ5) 6 k1

]
= Tr [γµ 6 k2γν 6 k1]− Tr

[
γµγ5 6 k2γν 6 k1

]
− Tr

[
γµγ5 6 k2γν 6 k1

]
+ Tr

[
γµγ5γ5 6 k2γν 6 k1

]
Since (γ5)2 = 1, two of these terms combine:

Tr
[
γµ(1− γ5) 6 k2γν(1− γ5) 6 k1

]
= 2Tr [γµ 6 k2γν 6 k1]− 2Tr

[
γµγ5 6 k2γν 6 k1

]
Using the cyclic property of the trace, and also the definition of 6 a, we have:

Tr
[
γµ(1− γ5) 6 k2γν(1− γ5) 6 k1

]
= 2k1αk2βTr

[
γµγαγνγβ

]
− 2k1αk2βTr

[
γβγνγαγµγ5

]
Now we can use the identities we determined previously:

Tr
[
γµ(1− γ5) 6 k2γν(1− γ5) 6 k1

]
= 8k1αk2β(ηµαηνβ − ηµνηαβ + ηµβηαν)− 8k1αk2βiε

βναµ

which is:

Tr
[
γµ(1− γ5) 6 k2γν(1− γ5) 6 k1

]
= 8k1αk2βη

µαηνβ − 8k1αk2βη
µνηαβ + 8k1αk2βη

µβηαν − 8k1αk2βiε
βναµ

Since the metric is diagonal:

Tr
[
γµ(1− γ5) 6 k2γν(1− γ5) 6 k1

]
= 8k1µk2νη

µµηνν − 8k1αk2βη
µνηαβ + 8k1νk2µη

µµηνν − 8k1αk2βiε
βναµ

Simplifying:
Tr
[
γµ(1− γ5) 6 k2γν(1− γ5) 6 k1

]
= 8kµ1 k

ν
2 − 8(k1 · k2)ηµν + 8kν1k

µ
2 − 8k1αk2βiε

βναµ

6



Now we want to consider

Tr
[
γµ(1− γ5) 6 k2γν(1− γ5) 6 k1

]
Tr
[
γµ(1− γ5) 6 k4γν(1− γ5) 6 k3

]
=(

8kµ1 k
ν
2 − 8(k1 · k2)ηµν + 8kν1k

µ
2 − 8k1αk2βiε

βναµ
) (

8k3µk4ν − 8(k3 · k4)ηµν + 8k3νk4µ − 8kγ3k
δ
4iεδνγµ

)
In each of these, the first three terms are even and the last is odd. As we showed in previously, we can multiply these
separately. Hence,

Tr
[
γµ(1− γ5) 6 k2γν(1− γ5) 6 k1

]
Tr
[
γµ(1− γ5) 6 k4γν(1− γ5) 6 k3

]
=

(8kµ1 k
ν
2 − 8(k1 · k2)ηµν + 8kν1k

µ
2 ) (8k3µk4ν − 8(k3 · k4)ηµν + 8k3νk4µ)− 64k1αk2βε

βναµkγ3k
δ
4εδνγµ

Multiplying both sides by the necessary constants, we can simplify this as:

|M |2 =
G2

4

[
(8kµ1 k

ν
2 − 8(k1 · k2)ηµν + 8kν1k

µ
2 ) (8k3µk4ν − 8(k3 · k4)ηµν + 8k3νk4µ)− 64k1αk2βk

γ
3k

δ
4ε
βναµεδνγµ

]
Simplifying,

|M |2 = 16G2
[
(kµ1 k

ν
2 − (k1 · k2)ηµν + kν1k

µ
2 ) (k3µk4ν − (k3 · k4)ηµν + k3νk4µ)− k1αk2βkγ3kδ4εβναµεδνγµ

]
Doing the long multiplication, the terms in parenthesis become:

(k1 · k3)(k2 · k4)− (k1 · k2)(k3 · k4) + (k1 · k4)(k2 · k3)− (k1 · k2)(k3 · k4) + 4(k1 · k2)(k3 · k4)

−(k1 · k2)(k3 · k4) + (k1 · k3)(k2 · k4)− (k1 · k2)(k3 · k4) + (k1 · k4)(k2 · k3)

Combining similar terms, this reduces, giving:

|M |2 = 16G2
[
2(k1 · k3)(k2 · k4) + 2(k1 · k4)(k2 · k3)− k1αk2βkγ3kδ4εβναµεδνγµ

]
The Levi-Cevita tensor expands as shown above, giving:

|M |2 = 16G2
[
2(k1 · k3)(k2 · k4) + 2(k1 · k4)(k2 · k3) + 2k1αk2βk

γ
3k

δ
4δβδδαγ − 2k1αk2βk

γ
3k

δ
4δβγδαδ

]
Hence,

|M |2 = 16G2 [2(k1 · k3)(k2 · k4) + 2(k1 · k4)(k2 · k3) + 2(k1 · k3)(k2 · k4)− 2(k1 · k4)(k2 · k3)]

Some terms cancel, leaving:
|M |2 = 64G2(k1 · k3)(k2 · k4)

Now we are ready to consider the infinitesimal decay rate. By definition,

dΓ = |M |2dLIPS

Plugging in both the invariant amplitude and the expression for the phase space, we have:

dΓ =
1

2m

(
64G2(k1 · k3)(k2 · k4)

) d3k2
(2π)32Ek2

d3k3
(2π)32Ek3

d3k4
(2π)32Ek4

(2π)4δ4(k1 − k2 − k3 − k4)

Bringing the constants to the front,

dΓ =
G2

8mπ5
((k1 · k3)(k2 · k4))

d3k2
Ek2

d3k3
Ek3

d3k4
Ek4

δ4(k1 − k2 − k3 − k4)

Let’s break apart the delta function into energy and momentum components. We work in the center of mass frame, where
the muon’s energy is its mass. The remaining particles have essentially no mass, so their energy is the opposite of their
momentum.

dΓ =
G2

8mπ5
((k1 · k3)(k2 · k4))

d3k2

|~k2|
d3k3

|~k3|
d3k4

|~k4|
δ(m− |~k2| − |~k3| − |~k4)|δ3(~k2 + ~k3 + ~k4)

Note that in the muon rest frame, k1 = (m, 0, 0, 0). Then, k1 · k3 = mE3, and

dΓ =
G2

8mπ5
((k2 · k4)mE3)

d3k2

|~k2|
d3k3

|~k3|
d3k4

|~k4|
δ(m− |~k2| − |~k3| − |~k4)|δ3(~k2 + ~k3 + ~k4)
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For the remaining dot product, consider:

(k2 + k4)2 = k22 + 2k2 · k4 + k24

Since we’ve neglected many masses, the four-vector magnitudes are zero:

(k2 + k4)2 = 2k2 · k4

Remember that k1 = k2 + k3 + k4, so:

(k2 + k4)2 = 2k2 · k4 = (k1 − k3)2 = k21 − 2k1 · k3 + k23

The muon is at rest in this frame, and the everything else has a four-magnitude of zero, so:

2k2 · k4 = m2 − 2mE3

Hence,

dΓ =
G2

16mπ5

(
(m2 − 2mE3)mE3

) d3k2
|~k2|

d3k3

|~k3|
d3k4

|~k4|
δ(m− |~k2| − |~k3| − |~k4)|δ3(~k2 + ~k3 + ~k4)

We clean up and also note that E3 = |~k3|, so:

dΓ =
mG2|~k3|

16π5

(
m− 2|~k3|

) d3k2
|~k2|

d3k3

|~k3|
d3k4

|~k4|
δ(m− |~k2| − |~k3| − |~k4)|δ3(~k2 + ~k3 + ~k4)

It remains to do nine integrals. We’ll start with the k2 integral, using the delta function:

dΓ =
mG2|~k3|

16π5

(
m− 2|~k3|

) d3k3d
3k4

|~k3 + ~k4||~k3||~k4|
δ(m− |~k3 + ~k4| − |~k3| − |~k4)|

It remains to do six integrals. Let’s switch k3 to polar coordinates:

dΓ =
mG2|~k3|

16π5

(
m− 2|~k3|

) |~k3|2sin(θ)d|~k3|dθdφd3k4
|~k3 + ~k4||~k3||~k4|

δ(m− |~k3 + ~k4| − |~k3| − |~k4)|

We can rewrite this as:

dΓ =
mG2|~k3|2

16π5

(
m− 2|~k3|

) sin(θ)d|~k3|dθdφd3k4
|~k3 + ~k4||~k4|

δ(m− |~k3 + ~k4| − |~k3| − |~k4)|

By the so-called “parallelogram addition rule” (a manifestation of the Law of Cosines), we can write:

| ~A+ ~B|2 = | ~A|2 + | ~B|2 + 2|A||B|cos(θ)

Hence, with the axis defined along the k4 particle’s momentum, we write:

dΓ =
mG2|~k3|2

16π5

(
m− 2|~k3|

) sin(θ)d|~k3|dθdφd3k4(
| ~k3|2 + | ~k4|2 + 2| ~k3|| ~k4|cos(θ)

)
|~k4|

δ(m− |~k3 + ~k4| − |~k3| − |~k4)|

We now perform the φ integral:

dΓ =
mG2|~k3|2

8π4

(
m− 2|~k3|

) sin(θ)d|~k3|dθd3k4(
| ~k3|2 + | ~k4|2 + 2| ~k3|| ~k4|cos(θ)

)
|~k4|

δ(m− |~k3 + ~k4| − |~k3| − |~k4)|

Five integrals left. Let’s switch variables:

u2 = | ~k3|2 + | ~k4|2 + 2| ~k3|| ~k4|cos(θ)

2udu = −2| ~k3|| ~k4|sin(θ)dθ
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Then,

dΓ =
mG2|~k3|

8π4

(
m− 2|~k3|

) dud|~k3|d3k4
|~k4|2

δ(m− u2 − |~k3| − |~k4)|

We now perform the u integral:

dΓ =
mG2|~k3|

8π4

(
m− 2|~k3|

) d|~k3|d3k4
|~k4|2

∫
duδ(m− u2 − |~k3| − |~k4|)

What are the limits of integration? If θ = 0, then u =

√
| ~k3|2 + | ~k4|2 + 2| ~k3|| ~k4|, which we will call u+. If θ = π, then

u =

√
| ~k3|2 + | ~k4|2 − 2| ~k3|| ~k4|, which we will call u−. Hence, the u integral is one if:

u− < m− |~k3| − |~k4| < u+

and zero otherwise. Factoring, we see that this condition is:

±(|~k3| − |~k4|) < m− |~k3| − |~k4| < ±(|~k3|+ |~k4|)

Taking the positive sign and solving the left inequality, we see that:

|~k3| <
m

2

Taking the negative sign and solving the left inequality, we see that:

|~k4| <
m

2

Solving the right inequality (with the positive sign), we see that:

|~k3|+ |~k4| >
m

2

We therefore note these constraints and take the value of the integral to be one, leaving:

dΓ =
mG2|~k3|

8π4

(
m− 2|~k3|

) d|~k3|d3k4
|~k4|2

Rewritten a bit, we have four integrals left:

dΓ =
mG2

8π4

(
m− 2|~k3|

) |~k3|
|~k4|2

d|~k3|d3k4

Let’s do the |~k3| integral next. From the constraints, we know that the upper limit is m
2 while the lower limit is m

2 − |~k4|.
The integral is then:

dΓ =
mG2

8π4

1

|~k4|2
d3k4

∫
|~k3|

(
m− 2|~k3|

)
d|~k3|

We evaluate the integral between those limits, to find:

dΓ =
mG2

8π4
d3k4

(
m

2
− 2|~k4|

3

)
Three integrals left. We’ll again switch to polar coordinates: this time it is trivial to evaluate the θ and φ components, so
we have:

dΓ =
mG2

2π3
|~k4|2

(
m

2
− 2|~k4|

3

)
d|~k4|

Let’s define E to be the electron energy, or |~k4|. Then:

dΓ

dE
=
mG2

2π3
E2

(
m

2
− 2E

3

)
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Rewriting a bit:
dΓ

dE
=
m2G2

4π3
E2

(
1− 4E

3m

)
By the way, this is the energy distribution of the emitted electron. To figure out the most probable electron energy, we
simply take the derivative of the right hand side and set it equal to zero. We obtain

Eprob =
m

2

This is also the maximum energy. Note that the energy distribution at hand does not set the maximum energy of the
electron; that is an external constraint set by the delta function which was required by conservation of energy. At any
rate, we have:

Γ =
m2G2

4π3

∫ m
2

0

E2

(
1− 4E

3m

)
dE

Evaluating the integral, we obtain:

Γ =
m2G2

4π3

m3

48

which is:

Γ =
m5G2

192π3

The muon lifetime is the inverse of this, or:

τ =
192π3

m5G2

G = 1.17× 10−5 GeV−2 and m = .1056584 GeV. Hence,

τ =
192π3

(.1056584 GeV)5(1.17× 10−5 GeV−2)2
= 3.30× 1018GeV−1

To get to seconds, multiply by Planck’s constant, ~ = 6.58× 10−25 Gev s.

τ = 2.17µs

This differs from the experimental value by only 1.2%. The only significant source of error is our approximation that all
masses are negligible except that of the µ, and that all momenta are neglible compared to the mass of the W boson.

3 Tau Lifetime

Let’s consider the decay modes of the τ :
τ → µ+ νµ + ντ

τ → e+ νe + ντ

τ → d+ u+ ντ (3 colors)

τ → s+ u+ ντ (3 colors)

The τ therefore has 8 decay modes, where the µ has only one. The leptonic decay modes are equally likely (up to the
mass of the lepton, which we neglected). The hadronic decay modes have a probability of 3|Vud|2 + 3|Vus|2 = 2.99. Hence,
the τ is 4.99 times as likely to decay as the µ, just due to the sum over all final states.

The other issue is that the τ is much heavier (by a factor of 16.82) than the µ. Combining these effects, we have:

lifetimeτ =
lifetimeµ

4.99(16.82)5
= 3.23× 10−13 s

Where we used the lifetime of the muon calculated above. This differs from the experimental value by about 11.1%.
The only significant source of error is our approximations that all masses are negligible except that of the τ , and that
all momenta are neglible compared to the mass of the W boson. In fact, the τ is only 16 times heavier than the µ.
Additionally, there may be a form factor in the hadronic final states.
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