
A Fermi National Accelerator Laboratory

Neural Network Tutorial for High Energy Physicists*

Bruce Denby
Fermi National Accelerator Laboratory

P.O. Box 500
Batavia, Illinois 60510

May 1!390

* Presented at the International Workshop of Software Engineering, Artificial Intelligence and Expert Systems
for High Energy and Nuclear Physics, Lyon, France, March 19-24,199O.

GP 0 erated by Untvmitks Research Association Inc. under contract with the United States Department it ~~~~~~

Neural Network Tutorial for High Energy Physicists*

Bruce Denby

Fermi National Accelerator Laboratory
Batavia, JL 605 10
U.S.A.

Abstract
Neural Networks are. introduced through analogies to data analysis and electronic techniques used in high energy
physics.

I. Introduction
Neural networks are data processing architectures constructed from large numbers of highly

interconnected simple pmzessors called neurons. The neurons in fact are not really processors at all
but are rather more akin to single gates. These networks resemble qualitatively structures found in
brains, which are known to consist of large numbers of simple neuron interconnected by means of
dendrites, axons, and synapses. Brain soucture is still poorly understood, but there exist today

some simple models of neural networks which already share some of the characteristics of brains, in
particular, fast pattern recognition in the presence of noise, and what might be called “reasoning”,
i.e., the finding of optimal solutions to a problem when constraints are present.

The field of applications of neural networks to high energy physics is still new, but this marriage
of disparate domains seems eminently reasonable both from the viewpoint of high energy physicists
and from that of researchers in neural networks. High energy physics needs very fast pattern
recognition for uiggering applications and to speed up offline processing. These needs today are

being driven by such new endeavors as SSC, LHC, and RHIC, in which event rates and event
complexity will reach unprecedented levels. The high energy physics applications may prove
attractive to researchers in neural networks because 1) the problems to solve are relatively clear cutZ)
high energy physics really needs a ‘real time’ application of neural nets, while simulations maybe
sufficient for applications in some other fields, 3) high energy physics is in the forefront of scientific
research, and, finally, 4) the $8 billion price tag, e.g., of the SSC may give the hopefully true
impression that funds will be available for research into these applications.

II. Analogy to Fast Electronics

l Talk presented by Bruce Denby at International Workshop of Software Engineering. Artificial
Intelligence. and Expert Systems for High Energy and Nuclear Physics, March 19-24.1990, Lyon, France.

Consider a beam line scintillator telescope with 4 scintillators, as shown very schematically in
figure 1. Signals from the scintillators pass via wires (we will ignore timing here) to a junction
where they are summed. The summed signals then pass into a saturating amplifier (i.e., a
discriminator) which gives a high output if all scintillators are hit and a low output if they are not.

output

Figure 1. Scintillator Beam Telescope

inputs from 0

other neurons

Figure 2. Hopfield model of a neuron
In figure 2 we show the Hopfield model of a neuron 1). the basic’building block of artificial

neural networks. Notice that it looks exactly like the discriminator of figure 1. This is because the
neuron performs a similar function. Signals from other neurons are summed at the input of the
neuron, which then responds to this sum. The response function of neurons in artificial neural
networks is called a ‘sigmoid’ function (see figure), which is quite similar to the output function of a

2

discriminator. It turns out that the more rounded, non-linear shape of the sigmoid is important, as
we shall see later.

Suppose we expand our beam line telescope to respond to tracks of a variety of orientations.We
could construct a hodoscope array and link together into di scriminators the outputs of counters which
will be hit by a particular track, as shown in figure 3 The device thus constructed, our fast ‘neural
network, produces a ‘high’ output for each track present in a given event.

track 1

track 2

track N

Figure 3. Hcdosc a pe associative memory
It is worth noting here another analogy to biology. In the visual system there exist cells which

respond to straight lines in the visual field 2). These neurons are found to simply sum the outputs of
light sensitive cells which happen to physically lie upon lines on the retina. These ‘orientation
sensitive’ units thus form a sort of coincidence of the light sensitive cells.

Our network can also be thought of as a ‘content addressable memory’. The hit patterns
corresponding to tracks are ‘stored’ in the memory through the interconnection pattern to the
discriminators. When a pattern is imposed on the memory, it gives a ‘high’ output if that pattern
corresponds to one that has been thus stored. Content addressable memories, which are more
usually referred to as ‘associative memories’ are usually depicted in a slightly different way, as
shown in figure 4. Here, the outputs of the scintillators are arranged vertically, and one summing
line is laid horizontally across them for each pattern to be stored. The pattern is encoded by
connecting the scintillators contributing to a given pattern to its corresponding summing line via a

3

.

resistor (the arrows in the figure). This type of circuit, also called a ‘pattern matching’ circuit, was
in fact exactly the type of circuit one referred to as a ‘neural network in the early days of neural
network research in the 1950’s. A CMOS implementation of such a circuit, referred to as a ‘neural
network associative memory’, has been recently constructed at ATT Bell labs 3). Although one
would probably not want to build a large tracking system from scintillators using this technique, a
similar thing has been done using silicon microstrips as inputs rather than scintillators. These are the
associative memory track finding chips being developed at INFN Pisa 4j.

scintillator signals

.-m-e.

0

0
.___-.

I , I I .----.
.__--.

0

1

2

N

Another view of scintillator associative memory

Figure 4.

II. Feed Forward Networks

In general, the resistors we use in our summing circuitry could be different, for example to
correct for miscalibrations or to weight certain counters more heavily than others in the sum. Let’s
explicitly exploit this option in an application to calorimetry. Consider an idealized, one dimensional
calorimeter with 5 cells. A monoenergetic beam containing electrons and hadrons will impinge near,
but not necessarily exactly at, the center of the array of cells. In the upper comer of figure 5 we
show how the energy deposits in the calorimeter might look for a typical electron and hadron. The
electron’s energy will be fully contained within the five cells by virtue of the intrinsic narrowness of
electron showers, but for the hadron, significant energy will typically leak out. Thus the energy

4

deposited in the calorimeter can be used as to identify the type of particle. All we need do is sum the
cell energies into a discriminator and set the threshold correctly, that is to say, use the cells as inputs
to a neuron. We may of course at the same time perform an arbitrary number of other linear
combinations of the cell energies. For example, we might want to compute the barycenter of the
distribution in order to know fairly precisely the position of impact of the particle. This we can
easily do by connecting the cells to another neuron via resistors weighted according to the position of
the center of each cell. Our network is now as shown in figure 5, but here we have adopted yet
another formalism to draw the net.. Neurons are represented by circles, and weights simply by lines
connecting the neurons. The lines are understood to contain weights which multiply the signals
passing through them. This is the formalism used in most of the literature on neural networks. Note
that if for some reason we did not know what values to assign to the weights, if the counters were
uncalibrated, for instance, we could determine them by taking some test data of pure electrons and
pure hadrons and then using some kind of iterative fitting technique to calculate the values of the
weights.

electron

JL

r
I-. i -,_ (hadron

, -7 I.. --I

1 5 . . .

Figure 5. Calorimeter Network
This network has a two layer structure, i.e., a layer of input signals and an output layer

containing the calculated quantities. Thus far we have just considered linear combinations of the
inputs. In fact, this kind of weighted summing of calorimeter energies is a fairly standard technique
for making fast calorimeter triggers. Why did we need to introduce neural networks? There are at
least two reasons. The first is that today very many researchers in a wide range of fields am anxious
to have neural net hardware which will permit them to program in large numbers of different
combinations of their input data in parallel. This demand will hopefully drive chip manufacturers to
produce large scale massively interconnected, programmable hardware. Even if, in high energy
physics, one only retained exactly the type of trigger circuit one is aheady accustomed to, these new

5

circuits should allow a much more compact and flexible implementation with several different types
of trigger sums performed on the same chip. But there is also another very important reason to
introduce neural networks. Linear summing networks are, of course, only sensitive to linear
correlations in the input data. If there were non-linear functions of the input data that were of interest
in triggering, how would we be able to access them?

output units

---_ n n ____

hidden units

bias
unit

input units

Feed forward neural network

Figure 6.
III. Nonlinearity

It turns out that by making more complicated, multilayer configurations of neurons, we can make
use of the nonlinear sigmoid functions of the neurons to handle nonlinear correlations in input data as
well. The standard multilayer configuration is shown in figure 6. It consists of an input layer, an
output layer, and an intermediate layer called the ‘hidden’ layer. Only the hidden and output layers
are sigmoid neurons; the input units are linear. There is also a so called ‘bias’ unit at the input
which has a constant value of 1 and which connects via weights to all hidden and output units. It is
of course well known that any function can be represented as a sum of sinusoids, i.e., as a Fourier
series. It is not unreasonable to suspect that a large variety of functions could also bc represented as
a sum of sigmoids. It has in fact been shown that any well behaved function mapping N real
variables onto M real variables can be represented to any desired degree of accuracy by a neural
network with N input units, M output units, and a single hidden layer 5). The network does this by
summing together many sigmoids which have been shif!ed, via the bias neuron and its weight, and
scaled, by the weights connected to their outputs.

6

What kind of nonlinear function would we be interested in for high energy physics? The truth of
the matter is that the majority of useful functions are probably nonlinear, but we give here an
example from electron identification. A popular method of discriminating electrons from hadrons in
real calorimeters is the covariance matrix technique. In one implementation of this technique 61, a $
is defined for electrons and hadrons. These are given by:

Xe2 = W’ePfePPe)

Xh2 = (P-PhlHh(P-Ph)

Where P is the vector of pulse heights in the calorimeter, H is the covariance matrix of the
calorimeter over test samples of electrons and hadrons, and ph and Pe are the vectors of mean pulse
heights for electrons and hadrons. Note that these ~2 are quadratic in the calorimeter energies.

One suategy then would be to try to construct a neural network to implement these functions. It
would have an input layer consisting of the calorimeter energies, a hidden layer of sigmoid units, and
a two unit output layer representing our two x 2. Our only task will be to determine the necessary
weight matrices to install in order to make the network implement the desired functions. As long as
we are going to go to all the trouble to do this, why not also take advantage of the following fact.
The network does not care what function we tell it to implement. Instead of arbitrarily choosing to
implement this particular covariance matrix technique, why not try to build a network to implement
the best possible electron/hadmn discrimination technique based on performance on a test data set.
We don’t care what the closed form of the function implemented is, we only care that the network
works well.

IV. Training

How can we find the weight matrices we need to do this? There is a standard procedure, called
‘backpropagation’ 7) which is used to ‘train’ neural networks to perform desired tasks. There are
other types of training algorithms but this is by the far the most common and is fairly easy to
implement. What is done in backpropagation is to define an energy function which is the sum over
the network and over a training sample of the deviation of the output values from their desired
values. Gradient descent is then performed on this function with respect to the weights in order to
minimise the deviation of the network response from the desired response. For pattern p,

E +, E(p) = Zip [d(p,i)-t(PYi)12

E’(p,i j) = [d(p j)-t(pj)lsYj)t(p.i) (for output units)

E’(p,i,j) = Zk[d(pj)-t(pj)ls’(k)w(kj)sY.i)t(p,i) (for hidden units)

where i j are the indices of neurons, p is the index of a pattern, w(i j) is the weight between neurons
i and j, E’(p,i j) is the derivative of the energy function (due to pattern p) with respect to w(ij),
d(p j) is the desired output of neuron j in pattern p. t(p j) is its hue output, and s’(i) is the derivative
of the sigmoid function of neuron i. The prescription of backpropagation then is that

Aw(ij) = -eE’(p,ij) + a(last Aw(ij))

where Aw(i,j) is the change in w(ij) for this iteration, E is the distance to move along the gradient,
also called the ‘learning coefficient’, and the term containing a, the ‘momentum’ coefficient, is a

smoothing term. In practice, the weights are up&ted after only one or a few presentations of
training patterns, rather than after the whole set. This is not true gradient descent but is easier to
implement and seems to work well. There are a number of commercial backpropagation simulators
on the market, but they are also rather easy to code in house. A general purpose Fortran simulator
has been written at Fermilab for high energy physics applications.

V. Electron Identification

What we are proposing to do then, is to construct a network with calorimeter energies as inputs,
a layer of hidden units, and two output units, and, using a set of known electrons and hadrons. train
the network to distinguish the two classes of events. We will run back propagation using the
uaining sample to determine the weights we need so that when electron energy deposits are
presented, the electron output bit goes high, and when hadronic deposits are presented , the hadronic
bit goes high. A test of this method was made and published by Cutts et al. 8). They considered a
section of calorimeter with 5 depth segments and summed the energy in the 4 concentric rings of
cells surrounding the entry point of the incident particle, which could be either an electron or a
hadron. The input layer of their network thus had 20 units. Eight hidden units were used and there
were two output units to specify electron or hadron. Some typical input patterns are shown in figure
7. The training data was generated using ISAJET to produce samples of electrons from decays of 2
particles, and hadrons from two jet events. After training,the performance was tested on an
independent set of events. A histogram of the output bits for this test sample is shown in figure 8,

8

F&m-e 7. Elecmms (left) and hadrons. Left axis is depth, bottom axis is distance from impact.

electrons backqround

125

100

II j 75 751-

25

I,, . .
CL* 0.4 0.8 0.4 0.6 0.8 0.4 0.8 I I

“BIYOPk DYCDYC “elYor* OulpYt

Figure 8. Network response to ebctrons (left) and hadrons.

9

showing the clear separation of the classes. The network was able to correctly identify 90 percent of
the electrons and only called .9 percent of the hadrons electrons, which is comparable to the results
they found using a standard electron identification algorithm. The neural net algorithm, however,
unlike a standard algorithm, may be. implemented as an analog circuit or some other fast hardware
implementation.

VI. Recurrent Networks
Up to now we have discussed feed forward networks. Signals enter through the input layer,

pass through the hidden layer, and exit through the output layer. There is also another standard
neural network architecture called the ‘recurrent network’ in which the outputs can be fed back into
the inputs, so that signals can cycle repeatedly through the network The basic architecture is shown
in figure 9.

6 6 6 6
Recurrent Network inputs

Figure 9.
In recurrent networks the neurons are not divided into input, hidden, and output. Rather, the data
are used to specify an initial set of levels at the neural inputs (which are in fact tied to the outputs),
and the network evolves to some final set of levels. It turns out that if the weights are chosen to be
symmetric, i.e., w(i j)=w(j,i), then the system will always evolve to a stable final state, and that,
furthermore, in so doing, an energy function,

10

E = -l/Z I;ij w(iJ)t(i)t(j)
will attain its minimum value 9). Although it is possible to do back propagation to determine the
weights needed for recurrent networks, what is more commonly done is to make use of the existence
of the energy function in order to guess a form for the weights. That is, one tries to post the problem
to be solved as a minimization problem and then deduces from the energy function the form the
coefficients must have.

Recurrent networks have been used in high energy physics in applications to tracking 10).
photon combinatorics ll), and secondary vertex finding 12). In the tracking application, the
neurons were identified with directed links connecting together two hits in a drift chamber as in
figure 10.

Neuron links

The weights were defined as
Figure 10.

w(i j) = COS"Oij / lilj
for neurons sharing a hit and in a head-tail conf@uration, where eij is the angle between the neurons,
and li and lj are the lengths of the neurons. For neurons in head-head or tail-tail configurations a
negative coefficieni is applied

w(i j) = -const.
It is only necessary to connect neurons to others in a small neighborhood, and very long neurons
need not be considered since they will never exist in a real uack. Thus neurons which have similar
directions will reinforce each other, as long as they are in a head-tail configuration, and other
neurons sharing hits will inhibit each other. ‘The network will minimize the sum of the cosn terms

11

.: ‘.

* *

,..

Energy 0.0000

Iteration 1

hi-$, $1

* /

(K

v/

\

Energy -3843.9600

Iteration 10
_--..--- I Figm 1~ H&S III .l’K born eTe- event (top) and reconstructed event (below).

12

between neighbouring neurons so that neurons which point along tracks will be reinforced and other
neurons will be inhibited. Figure 11 shows a simulated electron positron event reconstructed with
this method

The tracking algorithm has a couple of drawbacks. The first is that it requires a very large
number of neurons in order to accommodate the very high resolution of drift chambers and the like.
The second is that it is necessary to calculate new w(ij) for each event. This second point means
that even if one did have a neural net with enough neurons to do the tracking, it would be necessary
to recalculate the coefficients and reload them on each event, so that the speed advantage of the
network would be lost. There may be ways around these difficulties and work is continuing here.
In any case, the neural tracking algorithm is highly parallel and hence vectorizable, and the
calculation of the w&j) is vectorizable as well, so that this may present a good vectorizable tracking
algorithm even if for the moment we can not implement it in hardware l3). A similar algorithm has
been proposed for determining the trajectories of airplanes. Here the resolution required in not so
high 14). In general recurrent networks are used for optimization problems where there is a cost
function to be minimized in the presence of constraints. Recurrent nets have been used for the
Travelling Salesman Problem 15). for load balancing on parallel computers 16). for scheduling
classes l7), for graph partitioning, I*) and the like, often with very good results.

VI. Conclusion
Simple feed forward neural networks am circuits that look not much different from fast electronic

circuits that high energy physicists are familiar with. Far more powerful circuits will be possible
using neural networks by exploiting the nonlinearity in the neuron transfer function. It should be
possible to make complicated trigger decisions very quickly. Recurrent networks are appropriate to
problems requiring optimization in the presence of constraints. Hardware feed forward networks are
just beginning to appear on the market As yet no commercial recurrent networks have appeared, but
they should not be far behind.

REFERENCES
[l] J. J. Hoptield and D. W. Tank, Biological Cybernetics 52 (1985) p. 141.
[2] D. H. Hubel and T. N. Wiesel, J. Physiol. 160 (1962) pp. 106-154.
[3] L. D. Jackel. H. P. Graf, R. E. Howard, Applied Optics (1987) 5077.
[4] M. Dell’Orso and L. Ristori, VLSI Structures for Track Finding, proceedings of Int. Conference
on the Impact of Digital Microelectronics and Microprocessors on Particle Physics, Trieste. Italy, 28-
30 March, 1988, World Scientific Pub. Co.
[5] R. Hecht-Nielsen, Theory of Backpropagation Neural Networks, proc. of the International Joint
Conference on Neural Networks, vol. I, pp. 593605, Washington, D.C.,18-22 June, 1989, IEEE
Catalog no. 89CCH2765-6.
[6] M. G. Albrow et al., Nucl. Inst. Mesh. A256 (1987) 23-37.

13

[7] D. Rumelhart et al., Parallel Distributed Processing, Explorations in the Microstructure of
Cognition, vol. 1. ch. 8, MIT Press, Cambridge, Mass.
[8] D. Cutts et al., The Use of Neural Networks in the DO Data Acquisition System, presented at the
conference, Real Time ‘89, Williamsburg, VA (May 1989), proceedings to be. published.
[9] ibid. ref. 1
[lo] B. Denby, Camp. Phys. Corn. 49 (1988) 429448.

C. Peterson, Nucl. Inst. Mesh. A279 (1989) 537.
[ll] T. Awes, Nucl. Insr. Merh. A276 (1989) 468-481.
[121 B. Denby et al., Neural Networks for Triggering, FERMILAB-Conf-90/20.
[13] B. Denby and S. Liin, Camp. Phys. Corn. 56 (1990) 293-297.
[14] M. Oyster, Hughes Aircraft Corporation. in The DARPA Neural Network Study, AFCEA
International Press, Fairfax, VA (1988) p. 451.
[15] J. J. Hopfield and D. W. Tank, Science 233 (1986) 625.
[16] G. C. Fox and W. Furmanski. Load Balancing by a Neural Network, Caltech C3P363,
September, 1986.
[171 C. Peterson, private communication.
[181 ibid. ref. 10 (Peterson).

14

