ra4_macros  bede988c286599a3a84b77a4d788ac0a971e89f9
Namespaces | Functions | Variables
efficiency_map.py File Reference

Go to the source code of this file.

Namespaces

 efficiency_map
 

Functions

def efficiency_map.get_weighted_entries (chain, cuts)
 

Variables

tuple efficiency_map.parser = argparse.ArgumentParser()
 
tuple efficiency_map.args = parser.parse_args()
 
 efficiency_map.topo = args.topology
 
 efficiency_map.outdir = args.babydir
 
tuple efficiency_map.minnum = int(args.first)
 
tuple efficiency_map.maxnum = int(args.last)
 
 efficiency_map.skipcalc = True
 
 efficiency_map.infile = args.input
 
 efficiency_map.outfile = args.outfilename
 
tuple efficiency_map.bdir = os.getcwd()
 
float efficiency_map.lumi = 2.3
 
tuple efficiency_map.masspoints = set([x.split(topo+"_").pop().split("_Tune")[0] for x in glob.glob(outdir+"/baby_SMS-"+topo+"*.root")])
 With the fake dataset names: More...
 
tuple efficiency_map.npoints = len(masspoints)
 
list efficiency_map.bg = [3.5,0.5,2.7,0.5,0.8,0.1,1.3,0.3,0.5,0.1]
 
list efficiency_map.bindefs = ["njets<=8&&nbm==1&&met<=400","njets>=9&&nbm==1&&met<=400","njets<=8&&nbm==2&&met<=400","njets>=9&&nbm==2&&met<=400","njets<=8&&nbm>=3&&met<=400","njets>=9&&nbm>=3&&met<=400","njets<=8&&nbm==1&&met>400","njets>=9&&nbm==1&&met>400","njets<=8&&nbm>=2&&met>400","njets>=9&&nbm>=2&&met>400"]
 
list efficiency_map.cosmeticbindefs = [cut.replace("<="," #leq ").replace(">="," #geq ").replace(">"," > ").replace("=="," = ").replace("&&",", ").replace("met", "MET").replace("ht", "H_{T}").replace("njets","n_{jets}").replace("nleps","n_{lep}").replace("nbm","n_{b}") for cut in bindefs]
 
list efficiency_map.glumass = []
 
list efficiency_map.lspmass = []
 
list efficiency_map.effs = [[] for i in range(2+len(bindefs))]
 
list efficiency_map.yields = [[] for i in range(2+len(bindefs))]
 
int efficiency_map.sofar = 0
 
tuple efficiency_map.ch = ROOT.TChain("tree")
 if sofar>10: continue More...
 
tuple efficiency_map.glu = float(m.split("mGluino-").pop().split("_")[0])
 
tuple efficiency_map.lsp = float(m.split("mLSP-").pop().split("_")[0])
 
int efficiency_map.tot = 1000
 
tuple efficiency_map.reg4 = float(get_weighted_entries(ch,"mj>400&&mt>140"))
 
tuple efficiency_map.reg3 = float(get_weighted_entries(ch,"mj<=400&&mt>140"))
 
tuple efficiency_map.num = float(get_weighted_entries(ch,"mj>400&&mt>140&&"+cut))
 
tuple efficiency_map.outputFile = ROOT.TFile("plots/maps/"+outfile+".root","recreate")
 
list efficiency_map.graphs = []
 
list efficiency_map.hist = graphs[-1]
 
tuple efficiency_map.val1 = hist.GetBinContent(hist.FindBin(700,0))
 
tuple efficiency_map.val2 = hist.GetBinContent(hist.FindBin(600,100))
 
list efficiency_map.graphTitles = []
 Get histograms from root file to allow reading of input to use same code for original calculation and cosmetic re-runs. More...
 
int efficiency_map.maxfrac = 0
 
int efficiency_map.maxyield = 0
 
tuple efficiency_map.graph = outputFile.Get(name)
 
tuple efficiency_map.frame = ROOT.TH2F("frame","",100,700,1950,152,0,1450)
 
tuple efficiency_map.npx = int((1950-700)/17.68)
 
tuple efficiency_map.npy = int(1450/17.68)
 
tuple efficiency_map.c = ROOT.TCanvas()
 
tuple efficiency_map.tla = ROOT.TLatex()
 
string efficiency_map.outname = outfile+"efficiency_"