

- Technology Choices and a some History
- New Developments in Rigid-Flex and Full-Flex Technology
  - Aachen III
    Contributing
- Next Steps and

Aachen I, Bari, CE IC-London, Karlsrt Pisa, Vienna

Laboratories:

- Preparation of Industrial Production and Testing (FHIT)
- **Conclusions**





# Technology Choice and some History

### Start in 2000

- Option for fully industrial production
- Technology choice without validated proto-types: thick film on ceramic
- > 2000-2001/2
  - Prototyping in this technology ca. 180 FE-hybrids (CERN, Dorazil, Mipot)
  - Many design changes to adapt to detector-module integration
  - Development of an automatic test-station (FHIT) for industrial production
  - Identification of industrial partners

#### **2001**

- ASIC change: MUX, PLL, DCU -> packaged chips (LPCC)
- New technology options (FR4 and/or kapton, Flex-Rigid, Full-Flex)

### **2002**

- Electrical system tests
- Revision of initial technology choice, but no final choice (no valid prototypes)
- Start of industrial production planned









I FDC

### Modularity and Geometries



### **FE-hybrid types**

| TIB/TID |                                           | ТОВ                                                                                                 |                                                    | TEC                                                                             |                                                                                                                                                                                                                                                                                           |
|---------|-------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R-Ф     | stereo                                    | R-Ф                                                                                                 | stereo                                             | R-Ф                                                                             | stereo                                                                                                                                                                                                                                                                                    |
| 1056    | 1056                                      | 1680                                                                                                | -                                                  | 1152                                                                            | 1152                                                                                                                                                                                                                                                                                      |
| 1428    | -                                         | 2448                                                                                                | 1080                                               | 4096                                                                            | -                                                                                                                                                                                                                                                                                         |
| 2484    | 1056                                      | 4128                                                                                                | 1080                                               | 5248                                                                            | 1152                                                                                                                                                                                                                                                                                      |
| 3540    |                                           | 5108                                                                                                |                                                    | 6400                                                                            |                                                                                                                                                                                                                                                                                           |
| 15048   |                                           |                                                                                                     |                                                    |                                                                                 |                                                                                                                                                                                                                                                                                           |
|         | <b>R-Ф</b><br>1056<br>1428<br><b>2484</b> | R-Φ         stereo           1056         1056           1428         -           2484         1056 | R-ФstereoR-Ф1056105616801428-244824841056412835405 | TIB/TIDT OBR-ΦstereoR-Φstereo105610561680-1428-24481080248410564128108035405108 | TIB/TID       TOB       T         R-Φ       stereo       R-Φ       stereo       R-Φ         1056       1056       1680       -       1152         1428       -       2448       1080       4096         2484       1056       4128       1080       5248         3540       5108       64 |

 $\Rightarrow$  Need industrial production!









# Definition of FE Hybrid (I)

- Electrical functionality (2002):
  - Analogue read-out chips4 or 6 APV25
  - Power lines, grounding, decoupling
  - Auxiliary chips: MUX, PLL and DCU
  - Measurements (with DCU-chip) of :
    - Supply voltages and currents,
    - Temperatures on hybrid and detector (with internal and external thermistors)
    - Detector bias return current
    - No HV on hybrid
  - Open issues (see JD.Berst):
    - I2C termination
    - Detector return bias resistors
    - Voltage divider for DCU
    - Decoupling capacitors









# Definition of FE Hybrid

### **Iulti-layer board**

- Mechanical parameters
  - Two geometries
  - Heat transport to frame (**O** 3 Watt)
  - Support of pitch-adapter
  - Thickness limitations, less than one mm without components
  - No connector on the hybrid
  - Rigid and flat within 100 μm
  - Operation at -10° to -20 °C
  - Radiation hardness
- Electrical parameters (2002)
  - 4 metal layers
  - Via: Ø 100/300 μm
  - Line width: 120 μm
  - Separations (line/via): 180/90 μm
  - Bias line resistance: 20-50 m $\Omega$

### Kapton cable

- 1 or 2 connectors (NAIS and SAMTE
- Bending radius of 1-1.5 mm (180° tur
- SMD components
  - Minimal height
  - R and C of type 0402 and 0603
  - LPCC (since 2002): MUX, PLL, DCU
- Naked die ASICs to bond
  - 4 or 6 APVs, alignment ± 30 μm
  - (MUX-PLL)
  - (DCU)
  - Glob-top cover for bonds?

(Radiation hardness?)









## Dorazil and MIPOT Ceramic Hybrids

After a market survey (MS2991) only two companies agreed to produce hybrids for CMS Tracker M200 Milestone at reasonable price



•Yield about 80%

•103 at CERN

•ca. 20 at IReS











# Summary on Ceramic Hybrids

n total about 180 ceramic hybrids were produced

- Yield about 80% (we did not repair everything)
- About half will be used for prototype Si-detector modules until December
  - Assembly procedure
  - Performance in test beam
- Different electronic and electrical and mechanical system tests for the configuration TIB TOB and TEC.
- Temperature cycles
- Irradiation tests

eneral concept of FE-hybrid validated

everal changes requested (⇒ re-design of layout)

e-design with larger feature size necessary

ossible with new encapsulated control chips in 0.5mm pitch housings

ow other potentially significant cheaper technologies available

lew R&D and industry survey necessary at very late stage of proj









### Loaded TOB Rod with Si-Detector Modules



Used for double sided mode









### TIB Shell loaded with Si-Detector Modules











### Technology choices

### Thermo-mechanical properties

- Heat (max. 3 Watt) has to be transported to detector frame
- CTE compatibility with module frame material:
  - Hybrid will be glued on frame (carbon fibre or graphite)
  - Deformation
  - Lift-off
- Many simulations and tests to validate concept and substrate-material
- Suitable for automatic mounting on Gantry
  - Flatness
  - Rigidity

ntegration of cable and connector(s)?

| Material         | CTE<br>ppm/°C | Thermal Conductivity (W/mK) | Xo<br>(m |
|------------------|---------------|-----------------------------|----------|
| Al2O3            | 7.0           | 24.0                        | 75.      |
| FR4/G10          | 12-16         | 0.2-0.3                     | 194      |
| Carbon<br>Fibre  | < 1.0         | 200-400   <br>1 \( \pm\$    | 250      |
| Graphite<br>E779 | 7.4           | 65.                         | 188      |
| Polyimide        | 45.0          | 0.2                         | 280      |
| Cu               | 17.0          | 390.0                       | 14.      |
| Au               | 14.0          | 318.0                       | 3.3      |









# New Technological Choices Prototyping I Dec 2001-Jan 2002

- With new LPCC Control and Service ASICS
  - MUX, PLL, DCU
- Multi-layer board in "advanced" FR4 printed circuit board technology
- Could be very cheap in large quantities
- First circuits in January 2002
- **Boards** are correct
- Great difficulties to solder cable
  - ⇒ Only a few working proto-types
- Next step was cable integration:
  - > Go to Rigid-Flex hybrid



FR4 board with connector









# New Technological Choices

**Prototyping II** 

### Rigid(FR4) Hybrid:

Different companies with different echnologies and quality

### (CIBEL, GS-Precision)

- 2 bottom layers on rigid FR4
- 2 upper layers on polyimide

**Folerances in thickness up to 100 micron** 

Non-Flatness in the order of 100 micron pefore SMD montage, and we have seen more

Extend FR4 part under PA

FR4 thickness is limited by diameter/length ratio for blind via

Also GS Precision proposes new structure:















**Thick** 

# New Technological Choices (Full-Flex)

**Prototyping III** 

**CICOREL** 

| ex-Flex (all Kapton) laminated o | ex-Flex | (all Kapton) | <b>laminated</b> | on |
|----------------------------------|---------|--------------|------------------|----|
|----------------------------------|---------|--------------|------------------|----|

Carbon-fibre substrate

FR4-substrate with thermal heat conducts

Mechanical properties to be explored

- Final rigidity?
- Final flatness  $< 100 \mu m$ ?

oto-types available from CICOREL

#### **30 TOB**

- 12 laminated on FR4 with thermal via
- 20 laminated on CF

| Layer          | <b>Thickness</b> | Layer          |
|----------------|------------------|----------------|
| Hybrid         |                  | Cable          |
| Vernis         | 20               | Coverlay 25+25 |
| Cu 18+12       | 30               | Cu 18+12       |
| PI             | 25               | PI             |
| Cu             | 18               | Cu             |
| Glue           | 25               | Coverlay 25+25 |
| Cu             | 18               |                |
| PI             | 25               |                |
| Cu 18+12       | 30               |                |
| Coverlay 25+25 | 50               |                |
| Total          | 241              |                |

### **CICOREL**











# New Technological Choices (Full-Flex) Prototyping IV

**GS** Precision

### x-Flex (all Kapton) laminated on

Carbon-fibre substrate

FR4-substrate with thermal heat conducts

### proposal:

Have to keep 4-layer structure up to connector, cable thickness?

### CONEX(?):

Different process,

Cable should use layers 2 and 3

Re-design of layout!(?)



### **DYCONEX**











# New Technological Choices Conclusions-Proposal!

- I. Pure FR4, not followed any further
- **II.** Flex-Rigid in new structure of GS-Precision:
  - Heat-transfer integrated into design, no further carrier
  - Need valid prototypes to evaluate flatness and rigidity
     Nov02
  - Order the 50 TIB hybrids in final geometry
  - Evaluate assembled (by Hopp) hybrids
     Dec02

#### III. Full-Flex:

- Compare FR4 and CF carriers
- Load with components and evaluate Nov02
- Order larger quantity at Cicorel
   Dec02

### IV. Dyconex:

- Change layout, if interesting price estimate
   Oct02
- v. Prototypes are needed to qualify assembly companies!!!







### Industrial Production of FE-Hybrids

- Large quantities (more than 15000) can only be produced reliably in industry
- Numbers will help to achieve uniformity throughout production
- Industry will also be charged with the final acceptance test before delivery
- Preferably only one manufacturer or consortium, delivering final product
- Technical specifications have to be well defined before tendering
  - Careful evaluation and system tests mandatory!
- Qualification of manufacturer by proto-type runs
- Quality assurance during production:
  - In depth test/characterisation of random samples
  - Some temperature or other cycles in industry before final acceptance test
  - Rely on industrial standard during mass production
- Duration of production will be about one year









### Front-End Hybrid Industrial Tester (I)

sk: Simple acceptance test of hybrid in factory mponents:

Mechanical structure

Transition board (FEHC)

FHIT: electronic circuit including switching matrices

Active component, a connection to ARC and fast

Controllers

ARC Read-out system

Power supplies

PC

Barcode reader

Software

**ARC** board









## Front-End Hybrid Industrial Tester (II)





I FDCI A

### **Test sequence:**

- **→Power supply control**
- → Barcode scanning, recognition of hybrid type
- → Continuity test
- →Electrical test, including I2C scan
- → Functionality test (read-out of APVs)
- →Log file creation + error file + hybrid identification file
  - → XML (CMS database)

Response simplified for operator!):

green or red light

### **Block diagram**











### Summary and Conclusions

- Successful development of FE-hybrids for the CMS-tracker
- In total we have produced over 200 hybrids in different technologies
  - Required performance achieved!
  - Many modifications implemented to help system integration!
- New technologies (FR4, flex-rigid, full-flex) are being explored
  - Proto-types in industry are still in progress
  - They will determine the final technical specification and the choice of substrat
  - We still do need prototype runs to evaluate and to qualify the technology! Minimum 3 months!!
- Use these prototypes to set-up efficient module production to be ready when FE-Hybrids arri
- Full industrial production foreseen (duration is about one year)
  - Industrial tester (FHIT) has been developed for acceptance test









### Technology choices (I)

dustrial availability and price budget of tracker

adiation safety (no Ag)



### **Technology Candidates**

|   | Material   | Thickness(um) | % Xo  | Total |
|---|------------|---------------|-------|-------|
| * | Thick film |               |       |       |
|   | Al2O3      | 380           | 0.50% |       |
|   | Isol       | 110           | 0.15% |       |
|   | Au 8 um    | 25            | 0.75% | 1.40% |
| * | Cu on Kap  | bre           |       |       |
|   | CFPC       | 500           | 0.20% |       |
|   | Kapt.+glue | 150           | 0.05% |       |
|   | Cu 25 um   | 100           | 0.70% | 0.95% |
| * | Cu on FR4  |               |       |       |
|   | FR4        | 400           | 0.21% |       |
|   | Cu 25 um   | 100           | 0.70% | 0.919 |
|   |            |               |       |       |

(Very approximate figures!)









# **DCU**

Digital Test: OK

-1 LSB < DNL < 1 LSB

Transient noise RMS ~ 1/4 LSB

Power dissipation < 40mW

ADC Gain vs. X-ray dose: -0.4

%/Mrad

No evident changes in INL and transient noise RMS during and after X-ray irradiation













### NO.

### DCU ADC calibration





# Signal amplitude as a function of MUX resistors being switched on















APV current consumption distribution



