Front end Hybrid Industrial Tester UCL

UCL Louvain (L. Bonnet, V. Lemaître, X. Rouby) lemaitre@fynu.ucl.ac.be

In collaboration with

RWTH Aachen (M. Axer, F. Beissel, T. Franke, J. Mnich) IRES Strasbourg (JD. Berst, P. Graehling, P.Juillot, C. Maazouzi)

http://www.fynu.ucl.ac.be/themes/he/cms/activities/tracker/hybrids.html

FHIT status

Now : 8 FHIT pcb = 3 dual-FHIT + 2 mono-FHIT

new : • ARC system (hardware & software)

- FHIT firmware
- LabVIEW interface (FHITS)

since Sept 2002

FHIT setup : being tested in Strasbourg...

- CT, ET, FT
- FHITS
- comparisons with other test stations
- reliability

Good feedback from Strasbourg

=> bug corrections

=> measurements in industrial-like conditions

→ reliability really improved

NEW Statistics !

~100 FEH including :

1663 (~60)	TEC	Тор	4 apv's
1664 (~10)	TEC	Bottom	4 apv's
1665 (~5)	TEC	Тор	6 apv's
1667 (~5)	TIB	Тор	4 apv's
1668 (~15)	TIB	Bottom	4 apv's
1670 (~2)	TIB	Bottom	6 apv's

... I125, I250, DCU calibration, DCU channels, MUX resistors, pedestal, noise, rawnoise, ...

Some statistics...

Signal after mux resistor patterns (APV = 0x24, Part = 1664, N = 7)

Pedestal distribution per channel (APV = 0x20, Part = 1663, N = 56)

All APVs cannot canonagilion ii v250 distribution per l'Eff capple tensions (part + 1673)

Xavier Rouby

CT & ET

FHIT *almost* ready for industries...

- CT: binary subtests (good or bad)
- ET : binary subtests
 - current measurements (one or all APVs biased)
 - DCU calibration data (linear / non-linear regions)

... but not yet !

Characterization from data analysis

(from statistical distributions)

I ₁₂₅ one APV biased	V_{min}	[42 ; 78] mA
	V _{nom}	[48 ; 84] mA
	V _{max}	[52 ; 88] mA
I ₂₅₀ one APV biased	V _{min}	[220 ; 320] mA
	V _{nom}	[300 ; 400] mA
	V _{max}	[320 ; 420] mA

≈ [0.7μ ; 1.3μ] and the same for I all biased BUT ...

UCL

... comments are welcomed !

tracker week 23.10.02

CMS

... acceptation intervals

FT : MUX test

What does the Industrial Test consist in ? http://www.fynu.ucl.ac.be/themes/he/cms/activities/tracker/ITcontent.html

Gain test : still to be analyzed...

Xavier Rouby

FT : pedestal test

Pedestal : good linear fit → conditions on fit parameters ?

Pedestal distribution per channel (APV = 0x20, Part = 1663, N = 38)

good / bad channels [$0.8~\mu$; $1.2~\mu$]

According to "*Procedures on module test*" L. Demaria, M. Meschini, F. Hartman, G.Dirkes

Xavier Rouby

FT : noise test

Noise : bad channel definition should be refined → too sensitive (20% : too small) ==> not always reproducible → noise should have upper (and lower) limit(s)

in case of an high noise mean, for instance

Proposal: noise should be in [0.1; 1.2] ADC counts and the interval around the mean should be increased...

(as well as trials with more data)

Xavier Rouby

IT conclusions

Waiting for enough data to deal with FT acceptation intervals
→ FHIT should not be sent in industry before having this data

BUT

FHIT is almost ready for CT & ET

- + : good stability
 - well tested
- :
- current measurements ~ relative to other test stations
 - minor instabilities in LabVIEW code (FHITS)
 - ERNI connector not really supported

Foreseen updates

Things to be realised:

- integration of new part numbers (as now TOB ≠ TEC) new firmware revision needed
- corrections of minor bugs in debug mode (NOT for industries) in FT (NOT for mono-FHIT) instabilities
- compatibility with new ERNI adapters (NOT available) *waiting for information => new firmware*
- FHIT test procedures
- link to database : from ASCII to XML files...

(next slide...)

Translation from FHIT log file to database XML file :

- by a dedicated C/C++ program (not by FHITS)
 - more efficient (faster)
 - easily updated (factorised from FHITS)
- not during IT (performed on several log file, afterwards)

Strong collaboration with P. Juillot (Strasbourg)

Available next weeks...

Next weeks...

Software debug (Louvain, Aachen, Strasbourg) Data analysis and characterization

... and FHIT can be sent to industries...

XML translation

FHIT tester

Xavier Rouby