

Introduction

 Measurement of fraction of bottom quark pairs produced in the same hemisphere in φ

 $\rightarrow f_{\text{towards}}$

- Study uses sample where one bottom decays into a J/Ψ and the other bottom decays into a SLT electron or CMUP muon
 - → Measures number of bottom quark pairs by fitting $c\tau$ of the J/Ψ and d₀ of the additional lepton simultaneously using an unbinned log-likelihood
- Try to study relative rates of the different bottom quark production mechanisms using angular correlations (Δφ) between bottom quarks

- Sin (2β) studies had large fraction of lepton flavor tags in same
- hemisphere as fully reconstructed bottom decays in the azimuthal angle.
 - $\rightarrow \Delta \phi$ not consistent with simulation
- This study was undertaken to better understand location of flavor tags for Run II measurements

Motivation (2)

- At low ΔΦ between the bottom quarks, gluon splitting and flavor excitation separate from flavor creation
 - \rightarrow No $\Delta \Phi$ cut between J/ Ψ and lepton necessary
 - Only $B_c \rightarrow J/\Psi \mid X$ and $b \rightarrow J/\Psi \mid_{fake} X$ produce candidates from same bottom decay
- Measurement of angular correlations can be used to tune leading-log generators

 \rightarrow Pythia, Herwig, Isajet, ...

800000¹⁰ ¹

Flavor Creation (α^2)

Interference Terms (α_{a}^{*})

 \rightarrow Flavor creation

perturbative calculations

2 bottom quarks final state in hard scatter (showering MC)

Bottom production proceeds through

three categories of diagrams in

- \rightarrow Flavor excitation
 - 1 bottom quark in initial and final state in hard scatter (showering MC)
- \rightarrow Gluon splitting
 - No bottom quarks in initial or final state in hard scatter (showering MC)
 - Also known as shower/fragmentation
- In showering Monte Carlos, mechanisms generated separately and added

•

Flavor Creation (α^2)

Interference Terms (α^4 ,)

J/Y Selection

- Search for J/Ψ in low p_T di-muon triggers
- Muons pass a trigger
- Muons pass p_T requirement
 → Varies with trigger
- Vertex χ^2 probability>1%
- Good χ^2 match of tracks to muon chambers

- Tight track quality
 - → Both stereo, axial hits in drift chamber (CTC)
 - → At least 3 of 4 silicon layers (SVX') with hits
- $2.9 < M_{J/\Psi} < 3.2$
 - \rightarrow Signal region
 - $|M_{PDG} M_{J/\Psi}| < 50 \text{ MeV}$
 - \rightarrow Sidebands
 - $-\ 2.9 {<}\ M_{J/\Psi} {<} 3.0$
 - $3.1 < M_{J/\Psi} < \!\! 3.2$

J/Y Candidates

- 177650 pass selection
- Fit with signal + sideband
 - \rightarrow Signal 2 G(x, σ)
 - \rightarrow Sideband 1st order polynomial
 - 2nd order polynomial used as a systematic check of shape assumption
- $R_{side} = 0.501 \pm 0.000043$ (stat) ± 0.044 (syst)
 - → Ratio of random track combinations in J/Ψ mass signal vs sideband region

SLT Electron Selection

Standard SLT electron selection except:

- \rightarrow Sliding dE/dx cuts
 - Same as B_c discovery
- \rightarrow Quality Track
 - Both stereo, axial hits in CTC
 - 3+ SVX hits
- $p_T > 2 \text{ GeV/c}$ •
- Conversion removal •
 - \rightarrow 15 candidates vetoed in J/ Ψ mass signal region
- 312 candidates found in J/Ψ mass signal region ۲
 - \rightarrow 107 Towards ($\Delta \phi < \pi/2$)
 - \rightarrow 205 Away ($\Delta \phi > \pi/2$)
- 92 candidates found in J/Ψ mass sideband • region
 - \rightarrow 45 Towards ($\Delta \phi < \pi/2$)
 - \rightarrow 47 Away ($\Delta \phi > \pi/2$)

Black histograms-SLT electron candidates

Yellow histograms-Conversion electrons

οF

, Laction per 0.75 0.55 0.25

0.25

0

5

- signal region
 - \rightarrow 64 Towards ($\Delta \phi < \pi/2$)
 - \rightarrow 78 Away ($\Delta \phi > \pi/2$)
- 51 candidates found in J/Ψ mass • sideband region
 - \rightarrow 34 Towards ($\Delta \phi < \pi/2$)
 - \rightarrow 17 Away ($\Delta \phi > \pi/2$)

Black histograms-SLT CMUP muon candidates Yellow histograms-J/ Ψ CMUP muons

- \rightarrow Same χ^2 requirements as J/ Ψ muon
- **Quality Track** •
 - \rightarrow Both stereo, axial hits in CTC
 - \rightarrow 3+ SVX hits
- $p_T > 3 \text{ GeV/c}$ •

15

5

20

pr (GeV)

X

XX

10

0.75

0.5

0.25

0.75

0.5

0.25

0

Fraction per

Fraction per

10

Em

 χ^2 CMU

5

10

Fit Description

- Binned unbinned extended log-likelihood
- Bin data in J/ Ψ mass(signal/sideband) and $\Delta\phi$ (towards/away)
- Inputs to the fit are the measured impact parameter of SLT lepton and $c\tau$ of J/Ψ
- Fit uses impact parameter and lifetime templates in order to determine number of events from each source
- Fit includes external constraints
 - \rightarrow Number of found conversion, estimated number of B_c events, etc.
 - \rightarrow Constraints are in all capital letters, fit values in all in lower case
- Similar of B_c Discovery Fits
 - \rightarrow CDF Note #3991
- Fit described in CDF Note #6263

Fit Description(2)

- Fit Breaks Up Into 3 Components
 - \rightarrow Global Constraints
 - Ratios of residual/found conversions, sideband/signal region for J/Ψ background
 - \rightarrow Bin Constraints
 - Number of sideband, signal, conversion events measured
 - Estimated number of B_c , $b \rightarrow J/\Psi l_{fake} X$ events

 \rightarrow Shape

– Impact parameter and $c\tau$ distributions for each of the event sources

$$\mathsf{L} = (\text{Global Constraints}) \prod_{i}^{\text{towards,away}} \left[(\text{Bin Constraints})_i \prod_{j}^{N_j} (\text{shape}_i(\mathsf{d}_{0j}, \mathsf{c}\,\boldsymbol{t}_j)) \right]$$

Event Sources

Impact parameter and pseudo-cτ uncorrelated

- J/Ψ
 - \rightarrow Bottom Decay
 - \rightarrow Direct J/ Ψ
 - \rightarrow Sideband
- Additional Lepton
 - \rightarrow Direct Fake Lepton
 - \rightarrow Bottom Decay
 - Includes sequential charm
 - \rightarrow Candidate with J/ Ψ candidate in mass sideband
 - \rightarrow Conversions (electrons)

Impact parameter and pseudo-cτ correlated

- Occurs when J/Ψ and leptons originate from the same displaced vertex

Event Sources (2)

- Uncorrelated
 - \rightarrow J/ Ψ from bottom decay- Lepton from bottom decay (n_{bb})
 - \rightarrow J/ Ψ from bottom decay- Direct lepton (n_{bd})
 - \rightarrow J/ Ψ from bottom decay- Conversion electron
 - \rightarrow Direct J/ Ψ Direct lepton (n_{dd})
 - \rightarrow Direct J/ Ψ Conversion electron
 - \rightarrow Events with J/ Ψ candidate in mass sideband (n_{side})
 - Direct J/ Ψ Lepton from bottom decay (n_{db}) is assumed to be small and set equal to zero.
- Correlated
 - $\rightarrow B_c \rightarrow J/\Psi l X (n_{Bc})$
 - $\rightarrow b \rightarrow J/\Psi l_{fake} X (n_{Bfake})$

$J/\Psi c\tau Fit$

- Uncorrelated bottom and direct J/Ψ shapes determined by fit to entire Run 1B sample
 → CDF Note #5029 (R. Cropp)
- Fit results
 - \rightarrow 22150±270 Bottom
 - $\rightarrow c\tau_{\rm B}$ =442±5 µm
 - \rightarrow 16.6±0.2% Bottom
 - \rightarrow CDF Note #3460 (H. Wenzel, D. Benjamin)
 - 16.69±0.16% Bottom
 - $c\tau_{B} = 452.4 \pm 4.6 \ \mu m$
 - \rightarrow CDF Note #5029 (R. Cropp)
 - 17.62±0.16% Bottom
 - $c\tau_{B} = 445.0 \pm 4.8 \ \mu m$

Bottom Impact Parameter Template

- Template fit to Monte Carlos
- Pythia 5.6 using CTEQ3L PDF
 - → Generate flavor creation, flavor excitation, and gluon splitting separately.
 - → Combined in Monte Carlos predicted ratio.
- b or \overline{b} forced to decay to J/Ψ

- Event selection
 - $\rightarrow J/\Psi$
 - DIMUTG
 - p_T same as data
 - Quality tracks
 - Vertex Probability >1%
 - J/Ψ mass signal region
 - → Additional lepton requirements are same as data except:
 - χ^2 requirement not applied to muons
 - CPR, CES, CTC dE/dx efficiencies applied using measured efficiencies

Bottom Impact Parameter Template

- The combined sample is fit to a function to include in unbinned likelihood fit
- Fits to individual mechanisms are very similar

Direct Impact Parameter Template

- Direct template determined by Monte Carlos
 - \rightarrow Heavy flavor background in jet samples has similar size/shape to tail in impact parameter resolution function
 - \rightarrow Pythia 6.129+QFL'
 - Lepton Fiducials
 - $p_T > 3 \text{ GeV/c} (\text{muon})$
 - $p_T > 2 \text{ GeV/c}$ (electron)
 - Quality Track
- Monte Carlos fit to smooth function to include in unbinned log-likelihood fit

- The impact parameter- $c\tau$ shape used to describe events with J/ Ψ in mass sidebands fit for using sideband data
 - \rightarrow ct and impact parameter fit independently
 - \rightarrow In electron sample, conversion component added to fit

Conversions vs. Bottom

- Conversion candidates (with SVX hits) and electrons from bottom MC have very similar absolute impact parameter shapes
- Signed impact parameter such that majority of conversion have positive impact parameter (see next slide)
 → Sign(C) d₀

Conversion Sample (1)

- Conversion found in J/Ψ sample are mostly positively signed
 - \rightarrow But large impact parameter tail and conversion radii outside of SVX layer 2
- How can 3 SVX hits be attached to theses tracks?
 - \rightarrow Large impact parameter yields a higher SVX search road
 - \rightarrow Higher false SVX hit attachment

Conversion Sample (2)

- Effect can be seen in conversion radius vs. impact parameter plot
 - → Conversion candidates have expected impact parameterconversion radius relationship
 - → Larger scatter at high conversion radius because at least one SVX hit mis-attached
 - Resolution closer to CTC only tracks

- Construct conversion impact parameter template from Monte Carlos
 - → Sample not large enough to measure from data directly
 - \rightarrow Candidates with at least 3 SVX Hits
 - \rightarrow Candidates with less than 3 SVX hits
- Relative amount of each component set by distribution of conversion radius seen in data
 - → Fraction of conversion candidates inside 6 cm in Monte Carlos matched to what is seen in data
 - Fraction of two components varied within statistical errors in data to estimate systematic uncertainty due to low number of found conversion found in J/Ψ dataset

UCSB

Bottom Meeting, Oct. 30, 2003 Bottom Production Azimuthal Correlations(Pre-blessing)-Anthony Affolder Slide 22

UCSB

Constructed shape describes conversion impact parameter shape remarkably well

Residual Conversion Estimates

- Residual conversions assumed to be caused by inefficiency of tracking at low p_T and of conversion finding algorithm
 - $\rightarrow \varepsilon_{cnv}(p_T)$ is tracking efficiency of softer conversion leg $\rightarrow \varepsilon_{cnv}(cut)$ is the efficiency of conversion selection criteria
 - Ratio of residual/found conversions (R_{conv}) is:

 $R_{conv} = P_{cnv} \bullet (1/\epsilon_{cnv}(p_T)/\epsilon_{cnv}(cut) - 1)$

- $\rightarrow P_{cnv}$ is the purity of the conversions removed
 - Assumed to be 1.0

 $\rightarrow R_{conv} = 1.00 \pm 0.38$

– Approximately 15 of 312 SLT electrons are conversions

 B_c measurement had a R_{conv} of 1.06 ±0.36

$b \rightarrow J/\Psi l_{Fake}$ Background (1) UCSB

- Number of events with a bottom hadron decaying into a J/Ψ and a "fake" lepton
 - → Punch-thorough/decay-in-flight (Muons)
- Estimated using B_c analysis' fake lepton rates and techniques
 - \rightarrow Bgenerator(NDE)+QFL'
 - → Details in CDF #5879 and #6263

- Decay-in-flight
 - \rightarrow 9.9±2.4
 - Using B_c Signal Cuts
 6.0±1.3 Predicted
 - 5.5 ± 1.4 B_c Analysis
- Punch-through
 - \rightarrow 1.76±0.88
 - Using B_c Signal Cuts
 0.83 ±0.33 Predicted
 0.88±0.35 B_c Analysis
- Fake electrons
 - \rightarrow 2.85±0.75
 - Using B_c Signal Cuts
 - 1.8 ±0.6 Predicted
 - 2.6 ± 0.3 B_c Analysis

$b \rightarrow J/\Psi l_{Fake}$ Background

- Muons required to: $\rightarrow p_T > 3 \text{ GeV}$ $\rightarrow \text{CMUP fiducial}$
 - \rightarrow CWOP Huucial
 - \rightarrow Quality Track
- Electrons required to:
 - $\rightarrow p_T > 2 \text{ GeV}$
 - \rightarrow Electron fiducial
 - \rightarrow Quality Track

UCSB

B_C cτ-Impact Parameter Template

- Number of $B_c \rightarrow J/\Psi 1 X$ background (N_{Bc}) determined using published B_c cross section ratio and efficiencies and fit number of $B^+ \rightarrow J/\Psi K^+$
 - \rightarrow See CDF #5879 & # 6263
 - $\rightarrow N^{\mu}_{B^c} = 7.2^{+2.6}_{-2.4}$
 - $\rightarrow N^{e}{}_{Bc} = 10.0^{+3.5}{}_{-3.3}$
- All B_c in towards bin
- Impact parameter- $c\tau$ shape determined using B_c fragmention Monte Carlos + QFL'.

 \rightarrow E. Braaten, et. al.

Bottom Meeting, Oct. 30, 2003 Bottom Production Azimuthal Correlations(Pre-blessing)-Anthony Affolder Slide 28

Fit Results (Muons)

CDF Preliminary (1994-1995)

Parameter	Fit Result		1	
en t	22.0 +7.6	Parameter	Fit Result	Constraint
Π _{bb} [*]	23.0 -6.9	r _{side}	0.501 + 0.04	0.501 ± 0.044
n _{bd} ^t	$1.6^{+4.6}$ 9	n	10 7 +2.5	117+26
n _d t	11.3 +5.1	¹¹ Bfake	-2.5	11.7 ± 2.0
dd		n _{Bc}	5.1 +2.5	$7.2^{+2.6}_{-2.4}$
n _{bb} ^a	43.6 + 10.2 - 9.0	n_{side}^{t}	32.9 +5.7	34
n _{bd} ^a	8.1 +8.0 -7.5	n · 1 ^a	18.2 +4.5	17
n _{dd} ^a	16.0 +5.5 -5.2	~~side	-3.9	~ ′

Bottom Meeting, Oct. 30, 2003 Bottom Production Azimuthal Correlations(Pre-blessing)-Anthony Affolder Slide 30

CDF Preliminary (1994-1995)

Parameter	Fit Result	Parameter	Fit Result	Constraint
n _{bb} t	29.6 ^{+11.7} -10.4	r _{side}	$0.504 + 0.04_{-0.04}$	0.501 ± 0.044
n _{bd} ^t	1.5 + 8.5 - 8.1	r _{conv}	0.99 +0.31 -0.28	1.00 ± 0.38
n _{bconv} t	0.0 (Constrained) 37 0 +8.0	n _{Bfake}	2.8 +0.7 _0.7	2.85 ± 0.75
n_{dd}	$2.8^{+2.1}$	n _{Bc}	10.0 +3.2 -3.3	10.0 + 3.5 - 3.3
$\frac{n_{dconv}}{n_{hh}}^a$	124.7 + 17.9	n _{convside}	8.9 +2.9 -2.04	9
n _{bd} ^a	-1.4 + 12.5 - 12.2	n _{side} ^t	45.4 +6.9	45
n _{bconv} ^a	1.2 (Constrained)	n _{side} ^a	47.6 +7.1 _6.5	47
n _{dd} ^a	49.5 ^{+9.2} _{-8.5}	Constrained $n_{bconv}=0.20 n_{dconv}$ (Ratio of J/ Ψ from bottom/direct)		
n _{dconv} ^a	6.0 ^{+2.6} _{-2.2}			

Bottom Meeting, Oct. 30, 2003 Bottom Production Azimuthal Correlations(Pre-blessing)-Anthony Affolder Slide 31

Bottom Meeting, Oct. 30, 2003 Bottom Production Azimuthal Correlations(Pre-blessing)-Anthony Affolder Slide 32

- 1000 Toy Monte Carlos samples made using assumed ct-impact parameter shapes and with similar numbers as data
 - \rightarrow Fitted results for all components has less than 0.1 (0.1) event bias and pulls of .95-1.08 (.94-1.05) for electrons (muons).
 - \rightarrow The fitted f_{toward} consistent with input value and width of distribution consistent with the error returned from the fit of data

Toy Monte Carlos Studies (1)

Toy Monte Carlos Studies (2)

- The fitted minimum of loglikelihood in data is also consistent with the distribution for the toy Monte Carlos assembles
 - → Electron: 50% of trials have a larger likelihood than data
 - → Muon: 20% of trials have a larger likelihood than data

Fit Systematics

- Sequential fraction varied by ±19%
 - \rightarrow As in μ - μ and μ -jet correlations papers
- Bottom lifetimes varied by $\pm 1\sigma$
- $\Lambda_{\rm B}$ fragmentation fraction varied by $\pm 1\sigma$
- Conversion shape varied
- f_{back} varied by $\pm 1\sigma$ and J/Ψ shapes refit
- Fit re-done with $N_{db} \neq 0$
- $N_{dconv}=0$ or $N_{bconv}=0$ and refit
- Direct d_0 shape parameter varied by $\pm 1\sigma$ and re-fit
 - \rightarrow As in B_c lifetime analysis

	Electrons	Muons
Sequential Fraction	±0.001	±0.003
Bottom Lifetimes	±0.003	±0.022
Frag. Functions	±0.001	±0.002
Conversion d ₀ Shape	±0.002	
f_{back} (J/ Ψ shapes)	±0.0002	±0.0001
N _{db}	±0.001	±0.02
N _{dconv} / N _{bconv}	±0.001	
Direct d ₀ Shape	+0.003 -0.004	+0.074 -0.010
Total Fit Systematic	+0.005 -0.006	+0.080 -0.031

0

0.5 1 1.5 2 Bottom Quark lyl $(J/\psi \log)$

Correction of Data to Quark Level

- To compare to theory predictions, the experimental measurement is corrected to the quark level
 - → The p_T and |y| in which 90% of Monte Carlos passing the selection criteria that have a smaller p_T (higher |y|) is found
 - \rightarrow f_{towards} of the Monte Carlos is measured with/without the addition requirements
 - → Ratio with/without cuts is the correction factor for B hadrons to partons
 - As in B rapidity correlations & μ - μ correlation measurements
- The correction factor given by Monte Carlos combination of FC, FE, and GS is central value of correction used
 - → Maximum difference for one production mechanism from the average is used to estimate the systematic uncertainty in correction
- $C_{B\to b}^{e} = 0.967 \pm 0.019 (stat) \pm 0.088 (syst)$
- $C^{\mu}_{B\to b} = 0.968 \pm 0.026(\text{stat}) \pm 0.061(\text{syst})$

0.5

Bottom Quark lyl (Electron leg)

1.5

0

Theory Prediction

- NLO QCD predictions is made with MNR
 - \rightarrow CTEQ5M and MRST99 used
 - \rightarrow m_b is varied from 4.5-5.0 GeV
 - → Renormalization scale is varied between 0.5-2.0
- Effects of large initial state transverse momenta made by varying <k_T> between 0-4 GeV
 - → Implied is the same method as diphoton (CDF #4726), µ-b (CDF #3165), and µ-µ (CDF #3374)

 Bottom quark p_T and y (not shown) very similar in PYTHIA and NLO (MNR)

→ Three production mechanisms in PYTHIA also have very similar distributions

• Bottom correlations in PYTHIA and NLO (MNR) look similar once a k_T between 2-3 GeV is applied to NLO theory

Bottom Meeting, Oct. 30, 2003 Bottom Production Azimuthal Correlations(Pre-blessing)-Anthony Affolder Slide 38

Comparisons between PYTHIA/MNR (3)

CSB

• $\Delta \Phi$ also matches between NLO and PYTHIA with a k_T between 2-3 GeV

CDF Diphoton k_T

- Measured diphoton system p_T is NOT consistent with NLO theory
 - \rightarrow Average system p_T in range of 2-4 GeV.
- Measurement is consistent with PYTHIA
 - → Includes initial and final state radiation beyond NLO calculations

Final Results

$$f^{\text{corr},\mu}_{\text{towards}} = 0.334 + 0.089_{-0.079} + 0.077_{-0.030} \pm 0.023$$

$$f^{\text{corr},e}_{\text{towards}} = 0.186 + 0.063_{-0.057} + 0.005_{-0.006} \pm 0.017$$

 $f_{towards}^{corr,e} = 0.298 \pm 0.013 \pm 0.029$ K. Lann

- $f_{towards}$ measured is consistent with the NLO prediction (MNR) with a $\langle k_T \rangle$ with a range between 0-3 GeV
 - \rightarrow Most consistent with 2 GeV
 - \rightarrow MNR with $\langle k_T \rangle = 4$ GeV disagrees with the f $^{e}_{towards}$ measurement at the 3 σ level
- The measured value of f_{towards} agrees with PYTHIA when combining all three bottom production mechanisms
 - \rightarrow PYTHIA flavor creation only disagrees with measurements by 3.4 σ and 2.1 σ for the muon and electron samples, respectively
- Measured $f_{towards}$ completely consistent with $\Delta\Phi$ measured in $B^{\pm} \rightarrow J/\Psi K^{\pm}$ and $B^{0} \rightarrow J/\Psi K^{0*}$
- PYTHIA and NLO kinematics agree once a $\langle k_T \rangle = 2-3$ applied to the NLO prediction

CSB

- $\varepsilon_{cnv}(cut)$ measured by loosening the conversion selection criteria and fitting the dE/dx of the additional conversion pair candidates
- $\epsilon_{cnv}(cut) = 72.3 \pm 6.5\%$

$\epsilon_{env}(p_T)$ Calculation

- $\epsilon_{cnv}(p_T)$ calculated in manner similar to B_c analysis
 - \rightarrow Monte Carlos π^0 matched to measured conversion pairs' p_T above 0.5 GeV where tracking is assumed to be fully efficient
 - $\rightarrow \epsilon_{cnv}(p_T)$ =# of found conversion (data)/ # of conversions in MC (full p_T range)
- $\varepsilon_{cnv}(p_T) = 69 \pm 5(stat) \pm 9(syst)\%$

Normalization of B_C Background

- To normalize the B_c background, the number of B⁺→J/Y K⁺ candidates in sample are fit
- The kaon is required to:
 - → Be in SLT electron fiduical region
 - $\rightarrow p_T > 2 \text{ GeV}$
- $245\pm39 \text{ B}^+ \rightarrow \text{J/Y K}^+$ candidates fit

Bottom Meeting, Oct. 30, 2003 Bottom Production Azimuthal Correlations(Pre-blessing)-Anthony Affolder Slide 47