Double Slit Interference
(slightly souped up)

\[\frac{1}{d} = \frac{1}{k} \]

Amplitude: \(A \) \(\propto \) \(e^{i(kx - \omega t)} \)

\[|k| = \frac{2\pi}{\lambda_0} \] in vacuum

\(Z \) (electric field strength)

Intensity \(\propto 4 \) times \(\left(\frac{1}{\text{slit}} \right) \)

\(\Rightarrow \) average over time

Zero: route 1 \(\frac{1}{\text{slit}} \) \(\Rightarrow \) \(r_1' \)

route 2 \(\Rightarrow \) \(r_2' \)

Intensity \(\propto \) intensity (compared to 1 slit)

\[\Rightarrow \] average over time
The mathematical expression is:

\[e^{i kr_1 - i \omega t} + e^{i kr_2 - i \omega t} = e^{i kr_2 - i \omega t} (e^{i k (r_1' - r_2')} - 1) \]

The amplitude is:

\[|\text{Amplitude}| = |e^{i k (r_1' - r_2')} - 1| \]

It vanishes when:

\[i k (r_1' - r_2') = \pi \]

\[= \frac{2 \pi}{\lambda} (r_1' - r_2') = \pi \]

\[r_1' - r_2' = \frac{1}{2} \lambda \]

The lens trick (look near slits):

\[k \Delta r = \frac{2 \pi d \sin \theta}{\lambda} = \pi \]

\[\Delta r = \frac{\lambda}{2 \sin \theta} \]

\[\max \sin \theta = \frac{n \lambda}{d} \]

\[\min \sin \theta = (n + \frac{1}{2}) \frac{\lambda}{d} \]
Coherence

About properties of source of light...

Atom \rightarrow \text{electron} \rightarrow \text{light} \rightarrow \text{atom}

atom \rightarrow \text{atom}

jostled = cT \ jostled

Typical T between jostles, times c is called the "coherence length"... if dsin\theta > L, cannot count on "stable phase relationship."

Intensity and Interference

\[E_{\text{tot}} = E_0 e^{ikr - i\omega t} (e^{i(k(r - r))} + 1) \]
Like Fig. 9

\[E_0 = \frac{2 E_0 \cos(\beta \cdot \theta)}{\sqrt{2}} \]

\[E_{\text{tot}} = 2 E_0 \cos(\frac{2\pi}{2\sin \theta}) \]

\[I_\theta = 4 I_0^2 \cos^2(\frac{2\pi}{2\sin \theta}) \]
Thin Films

Soap bubbles, oil on water.

\[\frac{\lambda_0}{n} \]

\[\lambda \rightarrow \frac{\lambda_0}{n} \]

\[\text{flips like phase shift of } \pi/2 \]

\[\text{extra } k/2 \]

\[\text{air } n=1 \]

\[\text{dense } n \]

\[\text{air } n=1 \]

\[d \rightarrow 0 \text{ think.} \]

\[\text{assume } \theta = 0 \]

\[\frac{2d}{(\lambda_0/n)} - \frac{1}{2} = 0, 1, 2, \ldots \]

\[\begin{aligned} 2nd &= m + \frac{1}{2} \\
& \text{reflection at front} \\
& \# \text{ wavelengths} \end{aligned} \]

\[d = \frac{\lambda_0}{2n} \left(m + \frac{1}{2} \right) \]

\[\text{maximum } d \rightarrow 0 \]

\[\frac{2d}{(\lambda_0/n)} - \frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \right) \frac{3}{2} > \frac{5}{2} \]

\[d = \frac{\lambda_0}{2n} \cdot m \]

\[\text{minimum} \]