\[\mathbf{J} = -e N_e \mathbf{v} \]

increases as one goes across.

decrease to compensate, when \(\frac{\partial N_e}{\partial x} = 0 \).

Ohm's Law

Empirically, in many substances,
\[\mathbf{J} \propto \mathbf{E}, \quad \mathbf{J} = \sigma \mathbf{E} = \frac{1}{\rho} \mathbf{E} \]

\(\sigma \) a constant known as conductivity, \(\rho \) resistivity.

The larger \(\sigma \), the more current density for a given \(\mathbf{E} \) applied.

\[\mathbf{J} = \sigma \mathbf{E} \]

leads to
\[\mathbf{V} = \mathbf{I} \mathbf{R}, \]

```
V = IR,  "extrinsic"
```

In material
\[\mathbf{E} = \frac{\mathbf{V}}{\ell}, \quad \mathbf{J} = \sigma \mathbf{E} = \frac{\sigma \mathbf{V}}{\ell} \]
\[I = J \cdot A = \frac{\sigma VA}{L} \]

\[V = \left(\frac{L}{\sigma A} \right) \cdot I \]

\[\text{\(P\) (new quantity) = \frac{1}{\sigma} (\text{not charge density})} \]

\[R = \frac{L}{A} \cdot \frac{1}{\sigma} = \frac{L}{A} \cdot \frac{1}{\sigma} \]

Units:

- CGS: $\frac{\text{esu}}{\text{cm}^2 \cdot \text{s}}$, $\frac{\text{esu}}{\text{cm}^2}$
- SI/MKS: $\frac{1}{\text{s}}$, $\frac{\text{esu}}{\text{cm}^2}$

There are some conditions for ohm's law... see text
TABLE 4.1

Resistivity and its reciprocal, conductivity, for a few materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Resistivity ρ</th>
<th>Conductivity σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure copper, 273 K</td>
<td>1.56×10^{-6} ohm-cm</td>
<td>6.4×10^5 (ohm-cm)$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>1.73×10^{-18} sec</td>
<td>5.8×10^{17} sec$^{-1}$</td>
</tr>
<tr>
<td>Pure copper, 373 K</td>
<td>2.24×10^{-6} ohm-cm</td>
<td>4.5×10^5 (ohm-cm)$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2.47×10^{-18} sec</td>
<td>4.0×10^{17} sec$^{-1}$</td>
</tr>
<tr>
<td>Pure germanium, 273 K</td>
<td>200 ohm-cm</td>
<td>0.005 (ohm-cm)$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2.2×10^{-10} sec</td>
<td>4.5×10^9 sec$^{-1}$</td>
</tr>
<tr>
<td>Pure germanium, 500 K</td>
<td>0.12 ohm-cm</td>
<td>8.3 (ohm-cm)$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>1.3×10^{-13} sec</td>
<td>7.7×10^{12} sec$^{-1}$</td>
</tr>
<tr>
<td>Pure water, 291 K</td>
<td>2.5×10^7 ohm-cm</td>
<td>4.0×10^{-8} (ohm-cm)$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2.8×10^{-5} sec</td>
<td>3.6×10^4 sec$^{-1}$</td>
</tr>
<tr>
<td>Seawater (varies with salinity)</td>
<td>25 ohm-cm</td>
<td>0.04 (ohm-cm)$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2.8×10^{-11} sec</td>
<td>3.6×10^{10} sec$^{-1}$</td>
</tr>
</tbody>
</table>

Note: 1 ohm-meter = 100 ohm-cm = 1.11×10^{-10} sec.
Potential difference V

Conductivity σ

Current I

Length L

Area A

Current density $J = \frac{I}{A}$

Electric field $E = \frac{V}{L}$

Resistance $R = \frac{V}{I} = \frac{L}{\sigma A}$
One interesting example:

What is the same? \(\nabla \cdot \vec{J} \) when steady state

\[
\nabla \cdot \vec{J} = \frac{\partial J_x}{\partial x} + \frac{\partial J_y}{\partial y} + \frac{\partial J_z}{\partial z} = \frac{\partial J_y}{\partial y} = 0
\]

in steady state.

What is different? \(\vec{E}_1 = \left(\frac{1}{\sigma_1} \right) \vec{J} < \left(\frac{1}{\sigma_2} \right) \vec{J} \)

(new field lines must start)

Must be some positive charge at the interface... in steady state, initially not (then, \(\frac{\partial \phi}{\partial x} \neq 0 \)) but it builds up.
Interesting Table - p. 133

\[p = \frac{1}{\sigma} \]

Pure Copper: \(1.56 \times 10^{-6} \) ohm-cm

\[\sigma = 1.56 \times 10^{-6} \text{ S} \]

\[1 \text{ cm} \]

Pore Water: \(25, 10^6 \) ohm-cm

Sea Water: \(25 \) ohm-cm

(Bath Water)

Purity matters a lot!

Conductivity/Resistivity are very sensitive to temperature... look at plot on page 140.

Reason: dominant motion in condensed matter is thermal motion, even when electric field is present. Electric field is a minor effect.

Usually.
all moving (won’t draw all)

ion, q_i, m_i, Mq_i

NO ELECTRIC FIELD

$\Delta \vec{p} = q_i \vec{E} \Delta t$

$M \Delta \vec{v} = q_i \vec{E} \Delta t$

$\Delta \vec{v} = \frac{q_i \vec{E}}{M} \Delta t$

$\langle \Delta \vec{v} \rangle = \frac{q_i \vec{E}}{M} \langle \Delta t \rangle$

$\langle \vec{v} \rangle = \langle \Delta \vec{v} \rangle$

$\langle \vec{v} \rangle = \frac{q_i \vec{E}}{M} \langle \Delta t \rangle$

bunch of neutral atoms in solid, liquid

$\langle \vec{v} \rangle = 0$

$\frac{1}{2} m \langle v^2 \rangle = \frac{3}{2} kT$

$\langle v^2 \rangle = \frac{3kT}{m}$

$\langle v^2 \rangle^{\frac{1}{2}} = \sqrt{\frac{3kT}{M}}$

Suppose: $T = 300 \text{ K}$, $m = 0.030 \text{ kg/mol}$

$\langle v^2 \rangle^{\frac{1}{2}} = \sqrt{\frac{3 \cdot 8.3 \cdot 300}{0.030}} = 500 \text{ m/s}$