Three perfect conductors put charge Q_1, Q_2, Q_3 on them, none = 0

- Electric fields will eminate from the charges
- No \vec{E} field inside \Rightarrow inside at one electric potential (no work needed to move charge around inside)
- \vec{E} must be \perp to the surface at the surface... \vec{E} always \perp to equipotential

Φ = 0

$E \cdot A = 4\pi \sigma \cdot A$

σ: depends on where you are
\[E = 4\pi \sigma \]

Conductor

- \(\vec{E} = 0 \)
- \[E = 4\pi \sigma \]

Sheet Charge

- \[E = -2\pi \sigma \]
- \[\sigma \]
- \[+ \]
- \[+ \]
- \[\Rightarrow \]

Change in \(\vec{E} \) due to \(\sigma \)

is \(4\pi \sigma \) in horizontal direction.

\[\oint_{\partial S} \vec{E} \cdot d\vec{A} = \sigma \]

General Electrostatic Problem

Outside a System of Conductors

\[\nabla^2 \varphi = 0 = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} \]
"Boundary Condition"

1. Shapes of the conductors
2. a) Potentials of them (or some of them)
 b) Charge on them (or some of them)
3. in between them
 \[\nabla^2 \phi = 0 \]
4. \(\phi \to 0 \) as \(r \to \infty \)

How many solutions?

A) none \(\nRightarrow \) physics
B) exactly one \(\nRightarrow \) that is it.
C) more than one

"Uniqueness": \(\phi(x, y, z) \)
\(\psi(x, y, z) \)

Suppose two solutions

Both satisfy boundary conditions...

at the conductors and

\(\nabla^2 \phi = 0, \ \nabla^2 \psi = 0 \) outside
Consider

\[W(x, y, z) = \Phi(x, y, z) - \Psi(x, y, z) \]

1. At the conductors, \(W(x_c, y_c, z_c) = 0 \) because

\[\Phi(x_c, y_c, z_c) = \Psi(x_c, y_c, z_c) \] (same boundary conditions)

2. \(\nabla^2 W = \)

\[\frac{\partial^2}{\partial x^2} (\Phi(x, y, z) - \Psi(x, y, z)) \]

\[+ \frac{\partial^2}{\partial y^2} (\Phi(x, y, z) - \Psi(x, y, z)) \]

\[+ \frac{\partial^2}{\partial z^2} (\Phi(x, y, z) - \Psi(x, y, z)) \]

\[= \frac{\partial^2}{\partial x^2} \Phi + \frac{\partial^2}{\partial y^2} \Phi + \frac{\partial^2}{\partial z^2} \Phi \]

\[+ \frac{\partial^2}{\partial x^2} \Psi + \frac{\partial^2}{\partial y^2} \Psi + \frac{\partial^2}{\partial z^2} \Psi \]

\[= \nabla^2 \Phi + \nabla^2 \Psi = 0 \]
3. \(W = 0 \) everywhere...
 \(W = 0 \) on conductors
 \(W = 0 \) as \(r \to \infty \)

4. \(\psi(x, y, z) = \psi(x, y, z) \)

Consequence: Cavity

- \(\psi = \) same constant in here
- \(\psi = \) constant
- Conductor

\[\vec{E} = 0 \] inside then, since
\[-\nabla \psi = 0 \]

matches boundary conditions

\[\nabla^2 \psi = 0 \]
Better yet:

\[\vec{E} = 0 \text{ outside} \]
\[\vec{E} = 0 \text{ inside} \]

→ perfect conductor

→ electrostatic limit (moving \(\vec{E} \) field can "penetrate"

Conductors

\[
\begin{align*}
Q_1 & \quad \text{if } R_1 < r \\
Q_1 + Q_2 & \quad \text{if } r = R_1 \\
Q_1 + \frac{Q_2}{R_1} & \quad \text{if } R_2 \leq r < R_1 \\
\frac{Q_1}{R_1} + \frac{Q_2}{R_2} & \quad \text{if } r < R_2
\end{align*}
\]