Vector Addition of Coulomb Forces

$q_1 = -2 \mu C$
$q_2 = 1 \mu C$
$q_3 = 3 \mu C$

Net force on q_3?

"Magnitude" due to q_1: $F_{31} = k \frac{q_1 q_3}{r_{13}^2}$

$k = 9 \times 10^9 \frac{N \cdot m^2}{C^2}$

$r_{13}^2 = 0.25^2 + 0.2^2$

$r_{13}^2 = 0.0625 + 0.04$

$r_{13}^2 = 0.1025 \text{ m}^2$

$F_{31} = 9 \times 10^9 \frac{N \cdot m^2}{C^2} \cdot \frac{(-2 \times 10^{-6})(3 \times 10^{-6}) C^2}{0.1025}$

$F_{31} = -54 \cdot 10^9 \cdot 10^{-12} = -53 \cdot 10^{-2}$

$F_{31} \approx -0.53 N$: - sign means attractive

"Magnitude" due to q_2: $F_{32} = k \frac{q_2 q_3}{r_{23}^2}$

$r_{23}^2 = 0.1^2 + 0.2^2 = 0.01 + 0.04 = 0.05 \text{ m}$

$F_{32} = 9 \times 10^9 \frac{N}{0.05}$

$F_{32} = 27 \times 20 \times 10^{-3} = 0.54 \text{ N}$ + sign means repulsive
\[F_{31y} = |F_{31}| \cos \theta_1 = 0.53 \cdot \frac{0.2}{\sqrt{0.2^2 + 0.25^2}} = 0.33 \text{N} \]
\[F_{32y} = -|F_{32}| \cos \theta_2 = 0.54 \cdot \frac{0.2}{\sqrt{0.2^2 + 0.1^2}} = -0.48 \text{N} \]
\[F_{3N_{xy}} = -0.15 \text{N} \]
\[F_{31x} = -|F_{31}| \sin \theta_1 = -0.53 \cdot \frac{0.25}{\sqrt{0.2^2 + 0.25^2}} = -0.41 \text{N} \]
\[F_{32x} = -|F_{32}| \sin \theta_2 = -0.54 \cdot \frac{0.1}{\sqrt{0.2^2 + 0.1^2}} = -0.24 \text{N} \]
\[F_{3N_{xy}} = -0.65 \text{N} \]
\[|F_{3N_e}| = \sqrt{0.15^2 + 0.65^2} = 0.67 \text{N} \]
\[\theta = \tan^{-1} \left(\frac{0.15}{0.65} \right) = 13.3^\circ \]

Electric Field

Abstraction: what sort of thing is present when just one charge is present?

⇒ "Electric Field"

⇒ confusion: every charge has its field...
Idea: $q_1 \leftrightarrow r_{12} \rightarrow q_2$

$F_{12} = k \frac{q_1 q_2}{r_{12}^2}$

(+) means repulsive)

$F_{12} = \left[\frac{k}{r_{12}^2} \right] \cdot q_1$

depends on #2

$F_{21} = k \frac{q_1 q_2}{r_{12}^2}$

(diagram of direction)

$F_{21} = \left[\frac{k}{r_{12}^2} \right] \cdot q_2$

depends on #1

\Downarrow focus

$E_1 = k \frac{q_1}{r_{12}^2}$

$q_2 \rightarrow F_{21} = q_2 \cdot E_1$

E_1 caused by q_1

F_{21} caused by q_2 interacting

$E_2 = \frac{k}{r_{12}^2}$

E_2 caused by q_2

F_{12} caused by q_1 interacting with E_2

Note:

$|E_1| \neq |E_2|$

although

when $q_1 \neq q_2$

(as drawn, $q_1 > q_2$)

still $|\vec{F}_{12}| = |\vec{F}_{21}|$
"Test Charge" \(q_0 \)

Conceptually: region of space, pre-existing electric field from other charges.

Imagine plonking down "test charge" \(q_0 > 0 \)

- Measure force, \(\vec{F}_0 \)
- On this charge.

\[\text{then } \vec{E} = \frac{\vec{F}_0}{q_0} \]

Electric Field Direction

1. **Away from a positive charge**
 - \(\vec{E} \) points away at random points
 - \(q > 0 \)

2. **Toward a negative charge**
 - \(\vec{E} \) points toward
 - \(q < 0 \)
 - \(q_0 \) would be attracted
Electric Field Calculations

Exercises in: symmetry, vector addition, calculus

Charged Line, Semicircle, radius a

Total Charge \(Q \), **linear charge density**: \(\lambda = \frac{Q}{\pi a} \)

\[dQ = \lambda \, d\Theta \]

\[\theta \]

\[a \]

\[\nu \]

\[dE_x \]

\[dE_y \]

\[dE \]

\[E_y = 0 \]

\[E_x : dE_x = (k \frac{\lambda d\Theta}{a^2}) \cos \Theta \]

\[E_x = \int dE_x = k \frac{\lambda}{a} \int_{-\pi/2}^{\pi/2} \cos \Theta \, d\Theta \]

\[= k \frac{\lambda}{a} \left(\sin \Theta \right)_{-\pi/2}^{\pi/2} = k \frac{\lambda}{a} (1 - (-1)) \]

\[= 2 k \frac{\lambda}{a} \]

\[E_x = \frac{2}{\pi} k \frac{Q}{\lambda a^2} \]

\[k = \frac{1}{4\pi \varepsilon_0} \]
Symmetry: at point P, $E_y = 0$
$E_z = 0$

\[dQ = \lambda \, d\theta \]

\[dE_x = k \, \frac{dQ}{r^2} \times \cos \alpha \]
\[= k \, \frac{\lambda \, d\theta}{x^2 + a^2} \cdot \frac{x}{\sqrt{x^2 + a^2}} \]
\[E_x = k \, \frac{\lambda \, ax}{(x^2 + a^2)^{3/2}} \int_0^{2\pi} d\theta = k \, \frac{2\pi \lambda \, ax}{(x^2 + a^2)^{3/2}} \]
\[= k \, \frac{2\pi \lambda \, ox}{(x^2 + a^2)^{3/2}} \]

\[E_x = k \, \frac{Q x}{(x^2 + a^2)^{3/2}} \quad k = \frac{1}{4\pi \varepsilon_0} \]

Line Charge \(\lambda = \frac{Q}{2a} \)

at point P, $E_y = 0$

\[dE_x = k \, \frac{dQ}{R^2} \cos \theta \]
\[= k \, \frac{\lambda \, dy}{R^2} \cos \theta \]