Chapter 21

1) Sound Waves - You Hear Pressure
2) \(I \propto A^2 \propto P_{\text{max}}^2 \), \(\beta = (10 \text{db}) \log(I/I_0) \)
3) Beats: Interference in time
4) Doppler Effect
5) Shock Waves

Sound: \(20 \text{Hz} \leq f \leq 20,10^3 \text{Hz} \) in air

\[y \rightarrow \text{now displacement from equilibrium II to direction of wave} \]

\[y(x,t) = A \sin(\omega t - kx) \quad \omega = 2\pi f = \frac{2\pi}{T} \]

\[k = \frac{2\pi}{\lambda}, \quad v = \frac{\lambda}{T} = \frac{\omega}{k} \]

but the ear really hears increments, decrements in pressure

so absolute pressure = \(p_a + p(x,t) \)

ambient, constant pressure \(\approx 10^5 \text{ Pa at one atmosphere} \)

"gauge" pressure

Goal then: relate \(p(x,t) \) to \(y(x,t) \)

Imagine a little cylinder, length \(\Delta x \), endcap area \(S \),

\[V = \frac{p}{S} \Delta x \]
NO WAVE

\[V = S \Delta x \]

WITH WAVE

\[V' = S(\Delta x + y(x+\Delta x,t) - y(x,t)) \]

\[\Delta V = V' - V = S (y(x+\Delta x,t) - y(x,t)) \]

\[\frac{\Delta V}{V} = \frac{S (y(x+\Delta x,t) - y(x,t))}{S \Delta x} \]

In the limit as \(\Delta x \to 0 \)

\[\lim_{\Delta x \to 0} \frac{\Delta V}{V} = \frac{\partial y}{\partial x} \quad \text{call} = \frac{dV}{V} \]

Bulk Modulus: p. 342, Eq. 11-13; to achieve "volume strain" \(\frac{dV}{V} \), must apply pressure increment (there \(\Delta p \), here \(p(x,t) \))

\[p(x,t) = -B \frac{dV}{V} = -B \frac{\partial y}{\partial x} \]

\[p(x,t) = -B \frac{\partial}{\partial x}(As \sin(\omega t - kx)) \]

\[y(x,t) \]

\[p(x,t) = BkA \cos(\omega t - kx) \]

\[V \ (\text{traveling wave}) \]

\[x \]
not quite same as a standing wave -

\[y(x, t) = \alpha \cos \left(\frac{\pi x}{L} \right) \cos(2\pi ft) \]

\[p(x, t) = -B \frac{\partial y}{\partial x} \]

\[= -\frac{B \alpha \pi}{L} \sin \left(\frac{\pi x}{L} \right) \cos(2\pi ft) \]

Back to travelling wave:

\[P_{\text{max}} = BK \alpha \]

Book (Example 21-1): \[P_{\text{max}} \approx 3 \times 10^{-2} \text{ Pa} \]

\[A \approx \frac{P_{\text{max}}}{BK} \sim 10^{-8} \text{ m} \]

Compute from \(10^3 \text{ Hz} = f \)

Can even hear: \(3 \times 10^{-5} \text{ Pa} @ f = 10^3 \text{ Hz} \)

Sound Intensity

Power = force \cdot velocity

\[\text{Power} = \frac{\text{force}}{\text{Area}} \cdot \frac{\text{velocity}}{\text{Area}} = \frac{\text{pressure}}{\text{area}} \cdot \text{velocity} \]

\[p(x, t) = BK \alpha \cos(\omega t - kx) \]

\[V = \frac{\partial y}{\partial t} = \omega A \cos(\omega t - kx) \]
\[
\frac{\text{Power}}{\text{Area}} = Bk\omega A^2 \cos^2 (\omega t - kx) \quad \text{average value is}\quad \frac{1}{2}
\]

\[
I = \langle \frac{\text{Power}}{\text{Area}} \rangle = \frac{1}{2} Bk\omega A^2
\]

\[
\frac{\omega}{k} = v = \sqrt{\frac{B}{p}} \quad ; \quad k = \sqrt{\frac{p}{B}} \omega
\]

then \quad \[I = \frac{1}{2} B \cdot (\sqrt{\frac{p}{B}} \omega) A^2 \]

\[
I = \frac{1}{2} \sqrt{\frac{p}{B}} \cdot \omega^2 \cdot \frac{p_{\text{max}}}{B^2 k^2}
\]

\[
= \frac{1}{2} \sqrt{\frac{p}{B}} \cdot v^2 \cdot \frac{p_{\text{max}}}{B^2}
\]

\[
= \frac{1}{2} \sqrt{\frac{p}{B}} \cdot \frac{B}{p} \cdot \frac{p_{\text{max}}}{B^2}
\]

\[
I = \frac{1}{2} \frac{p_{\text{max}}}{\sqrt{\frac{p}{B}}}
\]

Speaker

- **radius** \(r \)
- **area** \(4\pi r^2 \)

Sound intensity \(I(r) = \frac{P}{4\pi r^2} \)

Want intensity down by a factor of 100? more a factor of 10 away in distance
Sound intensity is usually measured in decibels:

$$B = (10 \text{ dB}) \log \frac{I}{I_0}$$

10 decibels per decade... I_0 is the "reference" intensity:

$$I_0 = 10^{-12} \text{ W/m}^2$$

So...

$$I = 1 \text{ Watts/m}^2$$

is:

$$B = (10 \text{ dB}) \log \left(\frac{1}{10^{-12}} \right)$$

$$= 10 \times \log \cdot 10^{12}$$

$$B = 10 \times 12 = 120 \text{ dB}$$

This hurts!

<table>
<thead>
<tr>
<th>$\frac{B}{\text{dB}}$</th>
<th>$\frac{I}{10^{-12} \text{ W/m}^2}$</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>10^{-10}</td>
<td>whisper</td>
</tr>
<tr>
<td>40</td>
<td>10^{-8}</td>
<td>quiet radio</td>
</tr>
<tr>
<td>60</td>
<td>10^{-6}</td>
<td>~ ordinary talking</td>
</tr>
<tr>
<td>70</td>
<td>10^{-5}</td>
<td>busy street</td>
</tr>
<tr>
<td>90</td>
<td>10^{-3}</td>
<td>train</td>
</tr>
</tbody>
</table>
Beats

1) \(f_1 \) is \(f_1 \)

2) \(f_2 \) is \(f_2 \)

\[
y_1(t) + y_2(t) = A \sin(2\pi f_1 t) + B \sin(2\pi f_2 t)
\]

simplify: take \(A = B \)

\[
f_1 = \frac{1}{2}(f_1 + f_2) + \frac{1}{2}(f_1 - f_2) = \bar{f} + \Delta f
\]

\[
f_2 = \frac{1}{2}(f_1 + f_2) - \frac{1}{2}(f_1 - f_2) = \bar{f} - \Delta f
\]

Then

\[
y_1(t) + y_2(t) = A \left\{ \sin(2\pi \bar{f} t + \bar{f} + \Delta f) + \sin(2\pi \bar{f} t + \bar{f} - \Delta f) \right\}
\]

\[
= A \left\{ \sin(2\pi \bar{f} t) \cos(2\pi \Delta f t) + \sin(2\pi \Delta f t) \cos(2\pi \bar{f} t)
+ \sin(2\pi \bar{f} t) \cos(-2\pi \Delta f t) + \sin(-2\pi \Delta f t) \cos(2\pi \bar{f} t) \right\}
\]

\[
= 2A \sin(2\pi \bar{f} t) \cos(2\pi \Delta f t)
\]

"carrier" \quad "envelope" \quad "beat"

\[
\left\langle \frac{1}{|\Delta f|} \right\rangle
\]

\[
\left\langle \frac{1}{2|\Delta f|} \right\rangle \left\langle \text{beat frequency} = 2\Delta f \right\rangle
\]
"Beat Frequency" = 2πf₁ = |f₁ - f₂|

Demonstration with tuning forks:
a little clay on one of them lowers its frequency; the smaller the amount of clay, the lower the (Δf), the longer the time between "beats."

Doppler Effect

Moving Listener... frequency changes

Time for fly to go from one wavecrest to next:
\[(v_L + v) \cdot t = \lambda\]

\[f'_L = \frac{1}{t} = \frac{v_L + v}{\lambda}\]

Recall: \[f_s = \frac{v}{\lambda}\]

\[f_L = \frac{v}{\lambda} (1 + \frac{v}{v_L}) = (1 + \frac{v}{v_L}) f\]

- higher pitch, higher frequency, move toward source
- lower pitch, lower frequency, move away from source
Moving Source... wavelength changes

\[\lambda = \frac{V}{f_s} \]

Stationary emitter

\[\lambda = (V + V_s) \frac{T}{f_s} = \frac{V + V_s}{f_s} (1 - V_s T) \]

Moving emitter

\[\begin{bmatrix} \bar{P} \\ \bar{V}_L \end{bmatrix} \]

\[f_L = \frac{V_L + V}{X} = \frac{V + V_L}{V + V_s} f_s \]

"Combined doppler"

Listener: \(V_L > 0 \), move toward source, \(f_L > f_s \) (higher pitch)

Source: \(V_s < 0 \), source moves toward listener, \(f_L > f_s \) too, (higher pitch)

Listener: \(V_L < 0 \), move away from source, \(f_L < f_s \) (lower pitch)

Source: \(V_s > 0 \), move away from listener, \(f_L < f_s \) (lower pitch)
Shock Waves

Moving source with speed v_s GREATER THAN wavespeed v:

$t=0$ source emits v_s

\[\sin \alpha = \frac{v/f_s}{v/v_s} = \frac{v}{v_s} \]

when $v < v_s$, $\sin \alpha < 1$, α real valued

(step back further)

wavefronts pile up \(\text{``shock wave''} \)

1. Supersonic plane, rocket, missile

2. Particle going $v < c$ in medium where light goes $\approx n$

\[n = \text{index of refraction} > 1 \]

(shock = Cerenkov radiation)