
Physics 23 Problem Set 7

Harry Nelson

Due Monday, November 12

Please make your work neat, clear, and easy to follow. It is hard to grade sloppy work accurately.
Generally, make a clear diagram, and label quantities. Derive symbolic answers, and then plug in
numbers after a symbolic answer is available.

1. Let’s learn in this problem a bit of the mathematics pertinent to the Maxwell-Boltzmann distri-
bution. A new, special function is useful for this topic, called the incomplete gamma function,
Γ(a, x):

Γ(a, x) =

∫ ∞
x

ta−1e−tdt.

The complete gamma function is Γ(a) = Γ(a, 0).

(a) Evaluate Γ(1) (this should be easy!). Take my word for it that Γ(1/2) =
√
π.

(b) Show, with integration by parts, that:

Γ(a+ 1) = aΓ(a)

and evaluate Γ(2) and Γ(3/2).

(c) The Maxwell-Boltzmann distribution is given in Equation 18.32 of your text, and is:

f(v) = 4π
( m

2πkT

)3/2

v2e−
mv2

2kT

i. Use calculus to evaluate the most probable speed vmp, and show that:

vmp =

√
2kT

m

ii. Show that you can rewrite f(v) as:

f(v) =
4√
π

1

vmp

(
v

vmp

)2

e
−

(
v

vmp

)2

iii. Show that the probability that a molecule has a speed greater than a specified velocity
ṽ, P (v > ṽ) is:

P (v > ṽ) =

∫ ∞
ṽ

f(v)dv =
Γ(3/2, (ṽ/vmp)2)

Γ(3/2)

(d) Numerically evaluate vmp for:

i. A hydrogen atom on the Sun, where the temperature is 5800 K.

ii. A hydrogen molecule on the Mars, where the temperature is 0◦C.

(e) Numerically evaluate the escape velocity for:



i. The Sun, which has a mass of 2.0 × 1030 kg and a radius of 7.0 × 108 m. Newton’s
gravitational constant is G = 6.67× 10−11 Nm2kg−2.

ii. Mars, which has a mass of 6.4× 1023 kg and a radius of 3.4× 106 m.

(f) Numerical evaluation of the incomplete gamma function is available at the web page:
http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=Gamma2

i. Numerically evaluate the probability that a hydrogen atom on the Sun in thermal equi-
librium has a velocity that exceeds escape velocity.

ii. Repeat for a hydrogen molecule on Mars.

2. (a) Numerically evaluate 1/kT at room temperature (T = 20◦C) and at the temperature of the
sun (T = 5800 K) in units of (electron volts)−1. One electron volt equals 1.6× 10−19 eV.

We can simplify a light-emitting diode to a system with two quantum states for an elec-
tron trapped in the diode: a ground state and an excited state an energy ∆E above the
ground state. The electron in the diode is in thermal equilibrium with the environment at
its temperature T Use the Boltzmann factor to numerically evaluate the probability that the
electron is in the excited state first at room temperature, and second at the temperature of
the sun, for:

(b) A light emitting diode where ∆E = 2.5 electron-volts, which emits blue light.

(c) A light emitting diode where ∆E = 0.083 electron-volts, which emits infrared light.

3. 19.40

4. 19.48

5. 19.64


