Thermodynamic System

Example:

Box of gas N, P, V, T

characterize the state of the system. Imagine changing. How?

$Q =$ heat put in, > 0

(taken out) < 0

Work:

$W =$ work done by system.

$W > 0$ done by system on environment

$W < 0$ environment on system

Both introduction of $Q + W$

cause change of state

so... P, V, T change!
What will matter?

- Q: changes energy \(\underline{\text{AND}} \) entropy
- W: no entropy change

on PV diagram:

\[T = \frac{pV}{Nk} = \frac{pV}{nR} \]

\[U_i = \frac{3}{2} nRT_i \]

Internal energy if monatomic only depends on \(T \)

Now, add heat and/or let system do work. Get to \(p_2 V_2 \)

\[\int_{V_i}^{V_2} p(V) \, dV \]

\[W = \int_{V_i}^{V_2} p(V) \, dV \]

depends on path!
Notice what does not depend on path... Internal energy!

\[U_1 = \frac{3}{2} n R T_1 \quad \text{(monatomic)} \]
\[U_2 = \frac{3}{2} n R T_2 \]

\[U_2 - U_1 = \Delta U = \frac{3}{2} n R (T_2 - T_1) \]
\[= \frac{3}{2} (P_2 V_2 - P_1 V_1) \]

Same energy, did work... ????

Heat must have made up the difference.

\[\Delta U = \frac{3}{2} n R (T_2 - T_1) = Q - W \]

First Law of Thermodynamics

\[\text{path independent but difference not.} \]
Isotherm

\[pV = nRT = \text{constant} \]
\[p(V) = \frac{nRT}{V} \]

"Higher \"Isotherm\""

\[W = \int p(V) dV = \int \frac{nRT}{V} dV \]

\[W = nRT \ln \left(\frac{V_2}{V_1} \right) = nRT \ln \left(\frac{P_1}{P_2} \right) \]

\[\Delta U = Q - W \]

\[Q = W = nRT \ln \left(\frac{V_2}{V_1} \right) = nRT \ln \left(\frac{P_1}{P_2} \right) \]
Constant Pressure

\[W = p_1 (V_2 - V_1) \]
\[= p_1 V_2 - p_1 V_1 \]
\[= nRT_2 - nRT_1 = nR(T_2 - T_1) \]

\[\Delta U = Q - W = nC_p(T_2 - T_1) - nR(T_2 - T_1) \]

\[\frac{3}{2} nR(T_2 - T_1) \quad \text{(monatomic)} \]
\[\frac{5}{2} nR(T_2 - T_1) \quad \text{(diatomic)} \quad \text{etc.} \]

\[nC_p(T_2 - T_1) = \left(\frac{3}{2} + 1 \right) nR(T_2 - T_1) \]
\[nC_p(T_2 - T_1) = \frac{5}{2} nR(T_2 - T_1) \]
\[C_p = \frac{5}{2} R = C_v + R \]