Temperature: what is it?

- read off a thermometer
- your intuitively understand hot + cold

\[T_A = 110^\circ C \quad \text{hot block} \]
\[T_B = 0^\circ C \quad \text{cold} \]

touch

Just \(\Rightarrow \) Heat flows from \(A \) to \(B \)

(not temperature)

Due to the heat transfer, A cools off, B heats up.

Heat flow stops when \(T_{Af} = T_{Bf} \)

between \(110^\circ + 0^\circ \)
When $T_A = T_B$, two systems are said to be in thermal equilibrium.

"transitire" A in eq. with B

then... B in eq. with C

Temperature Scales

1. $^\circ F$: water freezes $32^\circ F$
 - boils $212^\circ F$

2. $^\circ C$
 - freeze $0^\circ C$
 - boils $100^\circ C$

3. K
 - $OK = -273.15 ^\circ C$
 - $\Delta T (K) = \Delta T (^\circ C)$

What? Meaning of OK... where a volume of gas has 0 pressure...
Empirically

\[P \]

- Volume of gas \(V_0 \)
- Put at a temperature \(T \), vary

\[PV_0 = nRTK \]
\[P = \left(\frac{nRT}{V_0}\right)T \]

- Gas could suck?

What really is temperature?

→ random motion of molecules
 (heat = energy = random directions, velocities)

→ randomness ↔ mathematically defined by entropy
Example: all air molecules could suddenly collect on left side of room, just probability is unbelievably small.

\[T \propto \frac{1}{\frac{\partial (\text{entropy})}{\partial (\text{energy})}} \]

\[\text{absolute} \]

\[T \text{ never } 0 \]

\[T \text{ can be negative (very weird, but possible)} \]

Thermal Expansion

Linear "rules"

\[\Delta L \propto L_0 \quad \text{(initial length)} \]

\[\propto \Delta T \quad \text{(K or °C)} \]

\[\Delta L = \alpha L_0 \Delta T \]

\[\uparrow \text{ depends on material} \]