Rapidity

\[\gamma \equiv \frac{1}{2} \ln \frac{E+p_z}{E-p_z} = \frac{1}{2} \ln \frac{\sqrt{M_{ee}^2 + p_z^2} + p_z}{\sqrt{M_{ee}^2 + p_z^2} - p_z} \]

\[x_1 = \frac{E+p_z}{\sqrt{s}} \]
\[x_2 = \frac{E-p_z}{\sqrt{s}} \]

\[y = \frac{1}{2} \ln \frac{x_1}{x_2} \]

\[\frac{x_1}{x_2} = e^{2y} \]

\[x_1 x_2 = \frac{M^2}{s} \]
\[x_1^2 e^{-2y} = \frac{M^2}{s} \]

\[x_1 = \frac{M}{\sqrt{s}} e^y \]
\[x_2 = \frac{M}{\sqrt{s}} e^{-y} \]

could transform to

\[\frac{d^2 \sigma}{dM dy} \] actually easier.
Decays

Problem

\[Z^0 \rightarrow \ell^+ \ell^- \sim 3.3\% \text{ per charged lepton} \]

\[W^\pm \rightarrow e^\pm \nu_e \sim 10\% \]

At LHC, TeV, \[Z^0 \rightarrow q\bar{q} \rightarrow \text{jets} \]

\[W \rightarrow q, \bar{q} \rightarrow \text{jets} \]

Hard to separate from background

Higgs Boson

1. Spin = 0
2. mass a "free parameter"
3. Essential for completing standard model
 keeps "wrong helicity" branching ratios from \(\infty \)
4. \[H \rightarrow q\bar{q} \leftrightarrow m_H \]

(!)
Makes mass

\[*H \rightarrow \text{condensed field} \]

Key point:

\[H \rightarrow q \bar{q} \quad \Gamma (H^0 \rightarrow q \bar{q}) \]

\[\frac{\Gamma}{\Gamma \text{tot}} \propto m_{q}^{2} \]

\[\Rightarrow \text{Heavy Quarks favored} \]

\[\Rightarrow ZZ^0, WW^- \text{ also favored if } m_H \text{ large enough} \]

\[\text{5) LEP: } \]

\[115 \text{ GeV} \leq M_{H^0} \leq 165 \text{ GeV} \]

\[\text{not above } H^0 \rightarrow ZZ^0 \]

\[\text{barely } H^0 \rightarrow W^+W^- \]

\[H^0 \rightarrow Z^0Z^0 \]
What does it do?

mostly $H^0 \rightarrow b\bar{b}$ (plot).

⇒ really hard

⇒ hope

1.5 ps life

\[\begin{array}{c}
\bar{b} \quad b \\
H^0
\end{array} \]

separated vertices

"Golden Mode" ⇒ $H^0 \rightarrow Z^0Z^0$

\[\rightarrow 4e \quad 2e2\nu \]

"Discovery" plot
Production:

Mainly

\[\sigma = \frac{\alpha s^2 G_F M_{h^2}^2}{11 \sqrt{2} 2^5 3^2} \, 8 \left(s^2 - M_{h^2}^2 \right) \quad \text{(narrow width)} \]

\[\Rightarrow \text{you calculate} \]

\[\Rightarrow \text{plot} \]

\[\Rightarrow \text{discovery plot} \]
Sensitivity to Higgs Mass due to "higher order" effects

1. Running with Q^2

\[\nu \rightarrow W \rightarrow u \]

$Q^2 \sim \text{few GeV}^2$

$Q^2 \sim (100)^2 \text{GeV}^2$

\[e^+ \rightarrow \nu \bar{\nu} \gamma \]

Vertex couplings are not constant, vary with Q^2 or length scale.

2. Loops + τ very heavy

\[W^+ \rightarrow W^+ \]

\[W^+ \rightarrow W^+ \]

\[W^+ \rightarrow W^+ \]

2 plots
General View Point

Higgs is "light", \(\leq 200 \text{ GeV/c}^2 \)

\[\begin{array}{c}
\text{H} \\
\text{X} \\
\text{X} \\
\text{H}
\end{array} \]

\(\text{spin 0} \)

\(X \to \text{unknown, but problem is, would make the Higgs \(\infty \) in mass (effectively).} \)

Idea: \(X' \)

\[\begin{array}{c}
\text{H} \\
\text{X'} \\
\text{X'}
\end{array} \]

\(\text{with sign!} \)

\(X \to \text{fermion} \)

\(X' \to \text{boson} \)

"Supersymmetry" Table
Key idea:

- "Gauge Couplings" of superpartners...
 \(\gamma, Z^0, W^+, g \)

same as original partners

\[
\begin{align*}
e^- & \quad \tilde{e}^- \\
\text{spin } \frac{1}{2} & \quad \text{spin } 0 \\
\text{"scalar" electron} & \\
\end{align*}
\]

Identical: em charge

Weak charge

color charge

Woops: \(\tilde{e}^- \rightarrow e_L + e_L \)\(\rightarrow \) \(Z^0 \)

Two 1 scalars: \(\rightarrow \tilde{e}^- \rightarrow \tilde{e}^- \rightarrow \tilde{e}^- \)
* Superpartners have a new quantum \#...

"P" Parity... conserved (maintains stable proton).

See table.

Meaning: very important:
superpartners must be pair produced...

Mixing

Spin-\(\frac{1}{2}\) partners of:

\(\gamma, Z^0, H^0 (\leq 21)\)

\(\tilde{\gamma}, \tilde{Z^0}, \tilde{H^0}\)

are not eigenstates!

Lightest: \(\tilde{\chi}_0\)... cannot decay
Spin $\frac{1}{2}$ partners of W^+/H

\tilde{W}^+ / H^+ can mix.

χ^+_1, χ^+_2

- Decays: $gg \rightarrow \tilde{g}\tilde{g}$

$\tilde{g}\tilde{g}$ pair

\tilde{g}, stuck with R-parity

usually $M_{\tilde{g}} > M_{\chi^0}$

Maybe: $\chi^0 \rightarrow g g$

χ^0
$\chi^0 \rightarrow$ escapes undetected
\rightarrow missing energy

LHC:

\[\text{jet (g)} \]

\[p \rightarrow \text{jet (g)} \]

\[p \rightarrow \text{missing energy} \]

Usually: all SUSY pair production causes missing energy.

- Masses of partners/s-p can be different