
Physics 225b Problem Set 3

Harry Nelson

due Monday, Feb. 9 in class

1. As you know, when an ultrarelativistic proton(neutron) has 4-momentum p, the probability of
finding a u-quark(d-quark) with 4-momentum xp (where x is the momentum fraction) is u(x),
the structure function; the usual approximation neglects the momentum transverse to the proton
momentum that arises from the uncertainty principle. Further, the structure functions for d, u,
and d quarks in the proton (or u, d, and u quarks in the neutron) are d(x), u(x), and d(x).
Isospin symmetry is implicitly assumed in the labelling. The normalization of the structure
functions is then set by the requirement that the net u-quark and d-quark probabilities are 2 and
1, respectively: ∫ 1

0

dx[u(x)− u(x)] = 2,

∫ 1

0

dx[d(x)− d(x)] = 1

(a) Explain (in a simple manner) why the essential information in electron-proton and electron-
neutron inelastic scattering may be quantified (neglecting the strange-quark and charm-quark
contributions) as:

dσep
dxdy

∝ fp(x) =
4

9
[u(x) + u(x)] +

1

9
[d(x) + d(x)] (1)

dσen
dxdy

∝ fn(x) =
4

9
[d(x) + d(x)] +

1

9
[u(x) + u(x)] (2)

(b) Derive the Gottfried Sum Rule:∫ 1

0

dx[fp(x)− fn(x)] =
1

3
+

2

3

∫ 1

0

dx[u(x)− d(x)]dx

(c) Experimentally, the quantity on the left-hand side of the Gottfried Sum Rule is 1/4 (approx-
imately), not 1/3. What do you conclude? Feynman actually predicted, qualitatively, this
effect. Physically, it need not imply isospin (that is, that u and d quarks are identical in
their strong interactions) violation. Suggest a physical origin.

(d) The best data concerning the physics in this question came from the E866 Experiment at
Fermilab, shown in Fig. 1. The process they used was Drell-Yan production of µ+µ− in the
collision of 800 GeV protons with hydrogen, and deuterium (a source of neutrons). The
momentum fraction carried by a parton in the projectile proton is called x1 and that carried
by a target parton is x2; the E866 Experiment was most sensitive when x1 ≈ 0.5� x2.

i. Draw the Feynman diagrams for the partons that cause pp→ µ+µ−X; no need to draw
the spectator partons. Repeat for pn→ µ+µ−X; neglect Z0 contributions.



proton. An extrapolation was made to account for the unmea-
sured region at lowx. To extrapolate this integral from the
measured region, which is shown in Fig. 11, to the unmea-
sured region, MRST and CTEQ5M were used to estimate the
contribution for 0<x<0.015 and it was assumed that the
contribution for x>0.35 was negligible. The uncertainty
from this extrapolation was estimated to be 0.0041 which is
half the difference between the contributions as given by
MRST and CTEQ5M.

VII. CHARGE SYMMETRY AND SHADOWING

The analysis presented here assumes that the parton dis-
tributions of the nucleon obey charge symmetry: i.e.,up(x)
5dn(x), d̄p(x)5ūn(x), etc. This is consistent with the treat-
ment in previous experiments@1–4# and global fits@13–15#.
The possibility that charge symmetry could be significantly

TABLE XI. The cross section ratio,d̄/ū and d̄2ū values determined from the combination of all data sets for eachx2 bin. The first
uncertainty is statistical and the second uncertainty is systematic. The quantities extracted from the cross section ratio are given forQ2

554 GeV2/c2. The cross section ratio has a systematic uncertainty of less than 1% as shown in Table X. The average values for kinematic
variables are also shown.

x2 range ^pT& ^Mm1m2&
min-max ^x2& ^xF& (GeV/c) (GeV/c2) spd/2spp

d̄/ū d̄2ū

0.015–0.030 0.026 0.534 1.004 4.6 1.03860.022 1.08560.05060.017 0.86260.48960.167
0.030–0.045 0.038 0.415 1.045 5.1 1.05660.011 1.14060.02760.018 0.77960.14260.096
0.045–0.060 0.052 0.356 1.076 5.6 1.08160.010 1.21560.02660.020 0.71160.07760.060
0.060–0.075 0.067 0.326 1.103 6.2 1.08660.011 1.24960.02860.021 0.53860.05560.041
0.075–0.090 0.082 0.296 1.122 6.8 1.11860.013 1.35560.03660.023 0.51260.04460.028
0.090–0.105 0.097 0.261 1.141 7.2 1.11660.015 1.38560.04660.025 0.40060.04060.022
0.105–0.120 0.112 0.227 1.156 7.5 1.11560.018 1.41960.06060.027 0.32160.03860.017
0.120–0.135 0.127 0.199 1.168 7.8 1.16160.023 1.63060.08560.031 0.33860.03460.013
0.135–0.150 0.142 0.182 1.161 8.2 1.13260.027 1.62560.11060.033 0.25960.03560.010
0.150–0.175 0.161 0.164 1.156 8.7 1.12460.027 1.58560.11160.032 0.18060.02760.008
0.175–0.200 0.186 0.146 1.146 9.5 1.14460.038 1.70960.15860.036 0.14260.02360.005
0.200–0.225 0.211 0.133 1.146 10.3 1.09160.047 1.56060.19460.034 0.08160.02260.004
0.225–0.250 0.236 0.120 1.178 11.1 1.03960.063 1.41960.26460.036 0.04560.02360.003
0.250–0.300 0.269 0.097 1.177 12.0 0.93560.067 1.08260.25660.032 0.00660.01960.002
0.300–0.350 0.315 0.046 1.078 12.9 0.72960.124 0.34660.39560.022 20.04060.03660.002

FIG. 9. d̄(x)/ū(x) versusx shown with statistical and system-
atic uncertainties. The combined result from all three mass settings
is shown with various parametrizations. The E866 data and the
parametrizations are atQ2554 GeV2/c2. The NA51 data point is
also shown.

FIG. 10. d̄2ū as a function ofx shown with statistical and
systematic uncertainties. The E866 results, scaled to fixedQ2

554 GeV2/c2, are shown as the circles. Results from HERMES
(^Q2&52.3 GeV2/c2) are shown as squares. The error bars on the
E866 data points represent the statistical uncertainty. The inner er-
ror bars on the HERMES data points represent the statistical uncer-
tainty while the outer error bars represent the statistical and system-
atic uncertainty added in quadrature.
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Figure 1: Reduced data from E866 on d(x) − u(x). Isospin invariance (that u and d have the same
strong interactions) implies that the solid curve through the filled black circles should go to 0 as x goes
to 0.

ii. Explain (in a simple manner) the following relations for the essential parts of the cross-
sections for Drell-Yan production:

dσpp
dx1dx2

∝ 4

9
[u(x1)u(x2) + u(x1)u(x2)] +

1

9
[d(x1)d(x2) + d(x1)d(x2)]

dσpn
dx1dx2

∝ 4

9
[u(x1)d(x2) + u(x1)d(x2)] +

1

9
[d(x1)u(x2) + d(x1)u(x2)]

iii. Explain why the terms involving u(x1) and d(x1) in the previous equations can be ne-
glected.

iv. Assume for the p-deuteron (pd) cross section:

dσpd
dx1dx2

=
dσpp
dx1dx2

+
dσpn
dx1dx2

and assume d(x)� 4u(x), then show:

dσpd

dx1dx2

2 dσpp

dx1dx2

∣∣∣∣∣
x1�x2

≈ 1

2

[
1 +

d(x2)

u(x2)

]
2. In this problem, transform the differential cross section for the elastic electromagnetic scattering

of an effectively massless electron of energy E off of a quark in a proton, both at rest, with quark



charge eqe (so that eq = −1/3 or +2/3) and mass m, to the center-of-momentum frame. That is,
transform:

dσ

dE ′dΩ
=

4α2e2qE
′2

Q4

[
cos2 θ

2
+

Q2

2m2
sin2 θ

2

]
δ

(
ν − Q2

2m

)
where

α =
e2

h̄c
E ′ = electron’s final energy in the frame where the quark is initially at rest

Q2 = −q2, where q2 is the square of the four momentum transferred by the electron = 4EE ′ sin2 θ

2
θ = scattering angle in the frame where the quark is initially at rest

ν = E − E ′

into a cross section expressed in terms of x = Q2/2Mp, s ≈ 2MpE (assume E � Mp; note
the use of the mass of the proton; this is the convention because we don’t have free quarks),
y = pq/pk = ν/E (in the quark or proton rest frame) where p is the initial proton 4-momentum,
k is the initial electron 4-momentum, q is the 4-momentum transfer from the electron, and θ∗ is
the scattering angle in the center-of-momentum frame:

dσ

dxdy
=

2πα2e2qs

Q4

[
1 + (1− y)2

]
xδ

(
x− m

Mp

)
=

2πα2e2qs

Q4

[
2 cos2 θ

∗

2
+ sin4 θ

∗

2

]
xδ

(
x− m

Mp

)
.

This scattering cross section in the quark rest frame allows one to trace the similarity to Rutherford
and Mott scattering; the sin2(θ/2) term arises from spin-flip in the quark rest frame, and is
suppressed for small momentum transfers, but, that term becomes sin4(θ∗/2) in the center-of-
mass frame. The cross section in the center-of-mass frame shows the similarity ((1 + (1− y)2) to
neutrino-quark scattering, as well as the xδ(x−m/Mp) term you would expect; when one imagines
a distribution of quark properties in x, this term becomes xfq(x).

You can start from the cross section in the quark rest frame and get to the center-of-momentum
frames any way you want, or, you can follow the suggestions below:

(a) Concerning δ
(
ν − Q2

2m

)
:

i. Derive the following equality, which determines the scattered electron energy in the
quark’s initial rest frame:

δ

(
ν − Q2

2m

)
=

1

1 + 2E
m

sin2 θ
2

δ

(
E ′ − E

1 + 2E
m

sin2 θ
2

)

ii. Derive another perspective on this delta function, useful in visualizing why x is the
fraction of Mp’s mass carried by the struck quark:

δ

(
ν − Q2

2m

)
=

m

MpEy
δ

(
x− m

Mp

)
.



(b) Concerning the change of variables:

dσ

dxdy
=

∣∣∣∣∂(E ′,Ω)

∂(x, y)

∣∣∣∣ dσ

dE ′dΩ
,

work out the Jacobian by writing E ′ and Ω = 2π(1− cos θ) in terms of x and y.

(c) Derive these relationships between center-of-momentum and lab quantities, assuming m �
E; recall that the collision occurs between the quark of mass m and the electron, so the
pertinent ‘reduced’ Mandelstam variable is ŝ ≈ 2mE:

E ′

E
= cos2 θ

∗

2
= (1− y)

θ ≈
√

2m

E
tan

θ∗

2

(d) Put these all together to transform the differential cross section in the quark rest frame to
that in the center-of-mass frame. Recall that you should work in the limit m,Mp � E.


