Physics 225b Problem Set 3

Harry Nelson

due Monday, Feb. 9 in class

1. As you know, when an ultrarelativistic proton(neutron) has 4-momentum p, the probability of finding a u-quark(d-quark) with 4-momentum xp (where x is the momentum fraction) is u(x), the structure function; the usual approximation neglects the momentum transverse to the proton momentum that arises from the uncertainty principle. Further, the structure functions for d, \overline{u} , and \overline{d} quarks in the proton (or u, \overline{d} , and \overline{u} quarks in the neutron) are d(x), $\overline{u}(x)$, and $\overline{d}(x)$. Isospin symmetry is implicitly assumed in the labelling. The normalization of the structure functions is then set by the requirement that the *net* u-quark and d-quark probabilities are 2 and 1, respectively:

$$\int_{0}^{1} dx [u(x) - \overline{u}(x)] = 2, \qquad \int_{0}^{1} dx [d(x) - \overline{d}(x)] = 1$$

(a) Explain (in a simple manner) why the essential information in electron-proton and electronneutron inelastic scattering may be quantified (neglecting the strange-quark and charm-quark contributions) as:

$$\frac{d\sigma_{ep}}{dxdy} \propto f_p(x) = \frac{4}{9} [u(x) + \overline{u}(x)] + \frac{1}{9} [d(x) + \overline{d}(x)]$$
(1)

$$\frac{d\sigma_{en}}{dxdy} \propto f_n(x) = \frac{4}{9} [d(x) + \overline{d}(x)] + \frac{1}{9} [u(x) + \overline{u}(x)]$$
(2)

(b) Derive the Gottfried Sum Rule:

$$\int_0^1 dx [f_p(x) - f_n(x)] = \frac{1}{3} + \frac{2}{3} \int_0^1 dx [\overline{u}(x) - \overline{d}(x)] dx$$

- (c) Experimentally, the quantity on the left-hand side of the Gottfried Sum Rule is 1/4 (approximately), not 1/3. What do you conclude? Feynman actually predicted, qualitatively, this effect. Physically, it need not imply isospin (that is, that u and d quarks are identical in their strong interactions) violation. Suggest a physical origin.
- (d) The best data concerning the physics in this question came from the E866 Experiment at Fermilab, shown in Fig. 1. The process they used was Drell-Yan production of $\mu^+\mu^-$ in the collision of 800 GeV protons with hydrogen, and deuterium (a source of neutrons). The momentum fraction carried by a parton in the projectile proton is called x_1 and that carried by a target parton is x_2 ; the E866 Experiment was most sensitive when $x_1 \approx 0.5 \gg x_2$.
 - i. Draw the Feynman diagrams for the partons that cause $pp \to \mu^+\mu^- X$; no need to draw the spectator partons. Repeat for $pn \to \mu^+\mu^- X$; neglect Z^0 contributions.

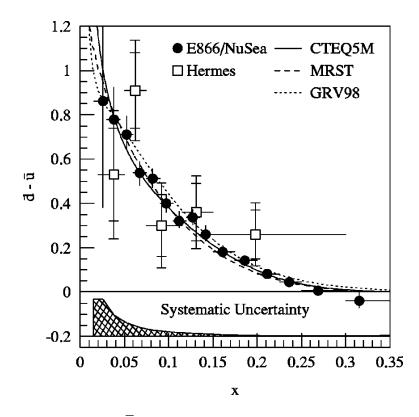


Figure 1: Reduced data from E866 on $\overline{d}(x) - \overline{u}(x)$. Isospin invariance (that u and d have the same strong interactions) implies that the solid curve through the filled black circles should go to 0 as x goes to 0.

ii. Explain (in a simple manner) the following relations for the essential parts of the crosssections for Drell-Yan production:

$$\frac{d\sigma_{pp}}{dx_1 dx_2} \propto \frac{4}{9} [u(x_1)\overline{u}(x_2) + \overline{u}(x_1)u(x_2)] + \frac{1}{9} [d(x_1)\overline{d}(x_2) + \overline{d}(x_1)d(x_2)] \\ \frac{d\sigma_{pn}}{dx_1 dx_2} \propto \frac{4}{9} [u(x_1)\overline{d}(x_2) + \overline{u}(x_1)d(x_2)] + \frac{1}{9} [d(x_1)\overline{u}(x_2) + \overline{d}(x_1)u(x_2)]$$

- iii. Explain why the terms involving $\overline{u}(x_1)$ and $\overline{d}(x_1)$ in the previous equations can be neglected.
- iv. Assume for the p-deuteron (pd) cross section:

$$\frac{d\sigma_{pd}}{dx_1 dx_2} = \frac{d\sigma_{pp}}{dx_1 dx_2} + \frac{d\sigma_{pn}}{dx_1 dx_2}$$

and assume $d(x) \ll 4u(x)$, then show:

$$\frac{\frac{d\sigma_{pd}}{dx_1 dx_2}}{2\frac{d\sigma_{pp}}{dx_1 dx_2}} \bigg|_{x_1 \gg x_2} \approx \frac{1}{2} \left[1 + \frac{\overline{d}(x_2)}{\overline{u}(x_2)} \right]$$

2. In this problem, transform the differential cross section for the elastic electromagnetic scattering of an effectively massless electron of energy E off of a quark in a proton, both at rest, with quark

charge $e_q e$ (so that $e_q = -1/3$ or +2/3) and mass m, to the center-of-momentum frame. That is, transform:

$$\frac{d\sigma}{dE'd\Omega} = \frac{4\alpha^2 e_q^2 E'^2}{Q^4} \left[\cos^2\frac{\theta}{2} + \frac{Q^2}{2m^2}\sin^2\frac{\theta}{2}\right]\delta\left(\nu - \frac{Q^2}{2m}\right)$$

where

 $\alpha = \frac{e^2}{\hbar c}$ E' = electron's final energy in the frame where the quark is initially at rest $Q^2 = -q^2, \text{ where } q^2 \text{ is the square of the four momentum transferred by the electron} = 4EE' \sin^2 \frac{\theta}{2}$ $\theta = \text{scattering angle in the frame where the quark is initially at rest}$ $\nu = E - E'$

into a cross section expressed in terms of $x = Q^2/2M_p$, $s \approx 2M_pE$ (assume $E \gg M_p$; note the use of the mass of the *proton*; this is the convention because we don't have free quarks), $y = pq/pk = \nu/E$ (in the quark or proton rest frame) where p is the initial proton 4-momentum, k is the initial electron 4-momentum, q is the 4-momentum transfer from the electron, and θ^* is the scattering angle in the center-of-momentum frame:

$$\frac{d\sigma}{dxdy} = \frac{2\pi\alpha^2 e_q^2 s}{Q^4} \left[1 + (1-y)^2\right] x\delta\left(x - \frac{m}{M_p}\right)$$
$$= \frac{2\pi\alpha^2 e_q^2 s}{Q^4} \left[2\cos^2\frac{\theta^*}{2} + \sin^4\frac{\theta^*}{2}\right] x\delta\left(x - \frac{m}{M_p}\right)$$

This scattering cross section in the quark rest frame allows one to trace the similarity to Rutherford and Mott scattering; the $\sin^2(\theta/2)$ term arises from spin-flip in the quark rest frame, and is suppressed for small momentum transfers, but, that term becomes $\sin^4(\theta^*/2)$ in the center-ofmass frame. The cross section in the center-of-mass frame shows the similarity $((1 + (1 - y)^2)$ to neutrino-quark scattering, as well as the $x\delta(x - m/M_p)$ term you would expect; when one imagines a distribution of quark properties in x, this term becomes $xf_q(x)$.

You can start from the cross section in the quark rest frame and get to the center-of-momentum frames any way you want, or, you can follow the suggestions below:

- (a) Concerning $\delta\left(\nu \frac{Q^2}{2m}\right)$:
 - i. Derive the following equality, which determines the scattered electron energy in the quark's initial rest frame:

$$\delta\left(\nu - \frac{Q^2}{2m}\right) = \frac{1}{1 + 2\frac{E}{m}\sin^2\frac{\theta}{2}}\delta\left(E' - \frac{E}{1 + 2\frac{E}{m}\sin^2\frac{\theta}{2}}\right)$$

ii. Derive another perspective on this delta function, useful in visualizing why x is the fraction of M_p 's mass carried by the struck quark:

$$\delta\left(\nu - \frac{Q^2}{2m}\right) = \frac{m}{M_p E y} \delta\left(x - \frac{m}{M_p}\right)$$

(b) Concerning the change of variables:

$$\frac{d\sigma}{dxdy} = \left|\frac{\partial(E',\Omega)}{\partial(x,y)}\right|\frac{d\sigma}{dE'd\Omega},$$

work out the Jacobian by writing E' and $\Omega = 2\pi(1 - \cos\theta)$ in terms of x and y.

(c) Derive these relationships between center-of-momentum and lab quantities, assuming $m \ll E$; recall that the collision occurs between the quark of mass m and the electron, so the pertinent 'reduced' Mandelstam variable is $\hat{s} \approx 2mE$:

$$\frac{E'}{E} = \cos^2 \frac{\theta^*}{2} = (1-y)$$
$$\theta \approx \sqrt{\frac{2m}{E}} \tan \frac{\theta^*}{2}$$

(d) Put these all together to transform the differential cross section in the quark rest frame to that in the center-of-mass frame. Recall that you should work in the limit $m, M_p \gg E$.