The results of many of the above experiments covered a large range of nuclei and demonstrated\textsuperscript{9} that two simple rules can be used to summarize the scheme of construction of spherical nuclei, viz.:

\begin{align}
  c &= (1.07 \pm 0.02) \times 10^{-13} A^{\frac{1}{3}} \text{ cm} \\
  t &= (2.4 \pm 0.3) \times 10^{-13} \text{ cm} = \text{constant}
\end{align}

The first equation gives the principal parameter governing the size of a nucleus and describes the behavior with increasing $A$ of a kind of «mean» nuclear radius. The second equation states that the nuclear skin thickness is constant. The second rule implies that there is some property of nuclear matter that causes the outer nuclear regions to develop an essentially constant surface thickness. The two rules together are responsible for the approximate constancy of the central charge density of nuclei. The latter property is il-