CITATTERS

transition radiation by a particle passing from one medium to another of different
optical properties.

13.1 Energy Transfer in a Coulomb Collision Between Heavy
Incident Particle and Stationary Free Electron;
Energy Loss in Hard Collisions

Collisions, Energy Loss, and
Scattering of Charged Particles;
Cherenkov and Transition Radiation

A swift particle of charge ze and mass M (energy E = yMc?, momentum P =

In this chapter we consider collisions between swiftly moving, charged particles,
with special emphasis on the exchange of energy between collision partners
and on the accompanying deflections from the incident direction. We also
treat Cherenkov radiation and transition radiation, phenomena associated with
charged particles in uniform motion through material media.

A fast charged particle incident on matter makes collisions with the atomic
electrons and nuclei. If the particle is heavier than an electron (mu or pi meson,
K meson, proton, etc.), the collisions with electrons and with nuclei have different
consequences. The light electrons can take up appreciable amounts of energy
from the incident particle without causing significant deflections, whereas the
massive nuclei absorb very little energy but because of their greater charge cause
scattering of the incident particle. Thus loss of energy by the incident particle
occurs almost entirely in collisions with electrons. The deflection of the particle
from its incident direction results, on the other hand, from essentially elastic
collisions with the atomic nuclei. The scattering is confined to rather small angles,
so that a heavy particle keeps a more or less straight-line path while losing energy
until it nears the end of its range. For incident electrons both energy loss and
scattering occur in collisions with the atomic electrons. Consequently the path is
much less straight. After a short distance, electrons tend to diffuse into the ma-
terial, rather than go in a rectilinear path.

The subject of energy loss and scattering is an important one and is discussed
in several books (see references at the end of the chapter) where numerical tables
and graphs are presented. Consequently our discussion emphasizes the physical
ideas involved, rather than the exact numerical formulas. Indeed, a full quantum-
mechanical treatment is needed to obtain exact results, even though all the es-
sential features are classical or semiclassical in origin. All the orders of magnituqe
of the quantum effects are easily derivable from the uncertainty principle, as will
be seen.

We begin by considering the simple problem of energy transfer to a free
electron by a fast heavy particle. Then the effects of a binding force on the
electron are explored, and the classical Bohr formula for energy loss is obtained.
A description of quantum modifications and the effect of the polarization of the
medium is followed by a discussion of the closely related phenomenon of
Cherenkov radiation in transparent materials. Then the elastic scattering of in-
cident particles by nuclei and multiple scattering are presented. Finally, we treat

vBMc) collides with an atomic electron of charge —e and mass m. For energetic
collisions the binding of the electron in the atom can be neglected; the electron
can be considered free and initially at rest in the laboratory. For all incident
particles except electrons and positrons, M >> m. Then the collision is best
viewed as elastic Coulomb scattering in the rest frame of the incident particle.
The well-known Rutherford scattering formula is

do ze?\’ L0
- 2’7 cosec > (13.1)
where p = yBmc and v = Bc are the momentum and speed of the electron in

the rest frame of the heavy particle (exact in the limit M/m — ). The cross
section can be given a Lorentz-invariant form by relating the scattering angle to

the 4-momentum transfer squared, Q> = —(p — p’)> For elastic scattering,
Q? = 4p? sin’(0/2). The result is
2
do ze?
— o A .
40" W(BCQ2> (13.2)

where fBc, the relative speed in each particle’s rest frame, is found from g° =
1 — (Mmc?IP - p)>.

The cross section for a given energy loss 7 by the incident particle, that is,
the kinetic energy imparted to the initially stationary electron, is proportional to
(13.2). If we evaluate the invariant Q7 in the electron’s rest frame, we find Q> =
2mT. With Q7 replaced by 2mT, (13.2) becomes

do 2mz%et
= STLE (13.3)

dT ~ mc*BT?
Equation (13.3) is the cross section per unit energy interval for energy loss 7 by
the massive incident particle in a Coulomb collision with a free stationary elec-
tron. Its range of validity for actual collisions in matter is

Tmin < I < 1

max

with T, set by our neglect of binding (7, = #i{w) where #{w) is an estimate
of the mean effective atomic binding energy) and 7,,,, governed by kinematics.
We can find T, by recognizing that the most energetic collision in the rest frame
of the incident particle occurs when the electron reverses its direction. After such
a collision, the electron has energy E' = ymc” and momentum p’ = yBmc in the
direction of the incident particle’s velocity in the laboratory. The boost to the
laboratory gives

Toax = E — mc? = y(E' + Bep') — mc? = 2v2B%mc? (13.4)



We note in passing that (13.4) is not correct if the incident particle has too high
an energy. The exact answer for Ty, has a factor in the denominator, D =
1 + 2mE/M?c®> + m*/M?. For muons (M/m =~ 207), the denominator must be
taken into account if the energy is comparable to 44 GeV or greater. For pro-
tons that energy is roughly 340 GeV. For equal masses, it is easy to see that

When the spin of the electron is taken into account, there is a quantum-
mechanical correction to the energy loss cross section, namely, a factor of
1 — B%sin%(6/2) = (1 — B T/Ta):

do 2mz%et T
- =—— |1 - 2
(dT)W me BT ( g Tmax) uRa)
The energy loss per unit distance in collisions with energy transfer greater
than & for a heavy particle passing through matter with N atoms per unit volume,
each with Z electrons, is given by the integral,
dE oz
2 (T>e) =sz T2 ar
dx e dT : (13.6)

22e* 2v2B*mc>
= 2wNZ mc B In . - p?

In the result (13.6) we assumed & << T, and used (13.5) for the energy-transfer
cross section. The small term, — B2, in the square brackets is the relativistic spin
contribution. Equation (13.6) represents the energy loss in close collisions. It is
only valid provided & >> fi{w) because binding has been ignored.

An alternative, classical or semiclassical approach throws a different light on the
physics of energy loss. In the rest frame of the heavy particle the incident electron ap-
proaches at impact parameter b. There is a one-to-one correspondence between b and
the scattering angle 6 (see Problem 13.1). The energy transfer 7 can be written as

27%* 1
mv? 'bz T plz

min

T(b) =

with b, = ze?/pv. For b >> b, the energy transfer varies as b2, implying that, if the

min

energy transfer is greater than e, the impact parameter must be less than the maximum,

2 24 1/2
() = ( 2 )

mv’e

When the heavy particle passes through matter it “‘sees” electrons at all possible impact
parameters, with weighting according to the area of an annulus, 27b db. The classical
energy loss per unit distance for collisions with transfer greater than ¢ is therefore

(c) 2
dE hmax(g) 204 btn(gnx
(T > 5) = 20NZ L 7(b)b db = 2aNZ mchﬁz In b(cfs) (13.7)

Substitution of b, and b, leads directly to (13.6), apart from the relativistic spin cor-
rection. That we obtain the same result (for a spinless particle) quantum mechanically
and classically is a consequence of the validity of the Rutherford cross section in both
regimes.

If we wish to find a classical result for the total energy loss per unit distance, we must
address the influence of atomic binding. Electronic binding can be characterized by the

frequency of motion (w) or its reciprocal, the period. The incident heavy particle produces
appreciable time-varying electromagnetic fields at the atom for a time At = b/yv [see
(11.153)]. If the characteristic time At is long compared to the atomic period, the atom
responds adiabatically—it stretches slowly during the encounter and returns to normal,
without appreciable energy being transferred. On the other hand, if Az is very short com-
pared to the characteristic period, the electron can be treated as almost free. The dividing
line is (w)At = 1, implying a maximum effective impact parameter
b, ~ L= (13.8)
(w)

beyond which no significant energy transfer is possible. Explicit illustration of this cutoff
for a charge bound harmonically is found in Problems 13.2 and 13.3.

If (13.8) is used in (13.7) instead of b (&), the total classical energy loss per unit
distance is approximately

dE 2et
dx =2nNZ In(B2 13.9
(dX >clas<ical . mCZBZ Il( () ( )
where
3 3 5 5
B.= A Y'Bmc % v BZmc o
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In (13.10) we have inserted a numerical constant A of the order of unity to allow for our
uncertainty in b{),. The parameter n = ze?/hv is a characteristic of quantum-mechanical
Coulomb scattering: n << 1 is the strongly quantum limit; n => 1 is the classical limit.
Equation (13.9) with (13.10) contains the essentials of the classical energy loss for-
mula derived by Niels Bohr (1915). With many different electronic frequencies, (w) is the
geometric mean of all the frequencies w;, weighted with the oscillator strength f;:

ZIn{w) = 2, f;In o, (13.11)
J
Equation (13.10) is valid for n > 1 (relatively slow alpha particles, heavy nuclei) but

overestimates the energy loss when 1 < 1 (muons, protons, even fast alpha particles). We
see below that when 1 < 1 the correct result sets = 1 in (13.10).

13.2 Energy Loss from Soft Collisions; Total Energy Loss

The energy loss in collisions with energy transfers less than &, including those
small compared to electronic binding energies, really can be treated properly
only by quantum mechanics, although after the fact we can “explain” the result
in semiclassical language. The result, first obtained by Bethe (1930), is
dE e’
—(T<e)= — 2 - B .
o (T< ) = 20NZ 505 (n[Bi(e)] — A7) (13.12)
where

yu(2me)'?
fi(w)
The effective excitation energy fi{w) is given by (13.11), but now with the proper

quantum-mechanical oscillator strengths and frequency differences for the atom,
including the contribution from the continuum. The upper limit & on the energy

B,(e) = (13.13)



transfers is assumed to be beyond the limit of appreciable oscillator strength.
Such a limit is consonant with the lower limit & in Section 13.1, chosen to make
the electron essentially free.

The total energy loss per unit length is given by the sum of (13.6) and (13.12):

dE 7%’
x = 47NZ W {In(B,) — B?) (13.14)
where
2 2 ancz
B, = _Zﬁlf_m_ (13.15)

The general behavior of both the classical and quantum-mechanical energy
loss formulas is illustrated in Fig. 13.1. They are functions only of the speed of
the incident heavy particle, the mass and charge of the electron, and the mean
excitation energy fi{(w). For low energies (y8 < 1) the main dependence is as
1/B%, while at high energies the slow variation is proportional to In(y). The min-
imum value of dE/dx occurs at yB8 = 3. The coefficient in (13.12) and (13.14) is
numerically equal to 0.150 z*(2Z/A)p MeV/cm, where Z is the atomic number
and A the mass number of the material, while p (g/cm’) is its density. Since
27/A =~ 1, the energy loss in MeV-(cm?/g) for a singly charged particle in alu-
minum is approximately what is shown in Fig. 13.1. For aluminum the minimum
energy loss is roughly 1.7 MeV - (cm?/g); for lead, it is 1.2 MeV - (cm?/g). At high
energies corrections to the behavior in Fig. 13.1 occur. The energy loss becomes
heavy-particle specific, through the mass-dependent denominator D in oy and
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Figure 13.1 Energy loss as a function of yB of the incident heavy particle. The solid
curve is the total energy loss (13.14) with #i{w) = 160 eV (aluminum). The dashed curve
is the energy loss in soft collisions (13.12) with & = 10 keV. The ordinate .SCZ}IS
corresponds to the curly-bracketed quantities in (13.12) and (13.14), multiplied by 0.15.
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has a different energy variation and dependence on the material, because of the
density effect discussed in Section 13.3.

The restricted energy loss shown in Fig. 13.1 is applicable to the energy loss
inferred from tracks in photographic emulsions. Electrons with energies greater
than about 10 keV have sufficient range to escape from silver bromide grains.
The density of blackening along a track is therefore related to the restricted
energy loss. Note that it increases more slowly than the total for large yB—as
In(y) rather than In(y?). A semiclassical explanation is given below.

Comparison of B, with the classical B, (13.10) shows that their ratio is n = ze*/hv.
To understand how this factor arises, we turn to semiclassical arguments. B.. is the ratio
of b(&), (13.8) to b’ = ze’/ymv®. The uncertainty principle dictates a different b, for
n < 1. In the rest frame of the heavy particle the electron has momentum p = ymo. If it
is described by a transversely localized wave packet (to define its impact parameter as
well as possible), the spread in transverse momenta Ap around zero must satisfy Ap << p;
otherwise, its longitudinal direction would be ill-defined. This limit on Ap translates into
an uncertainty Ab in impact parameter, Ab => fi/p, or in other words, an effective quan-
tum-mechanical lower limit,

bl = . (13.16)
ymv
Evidently, in calculating energy loss as an integral over impact parameters, the larger
of the two minimum impact parameters should be used. The ratio b{) /b% = n. When
1 > 1, the classical lower limit applies; for n < 1, (13.16) applies and (13.15) is the correct
expression for B.

The value of B, (&) in (13.12) can also be understood in terms of impact parameters.
The soft collisions contributing to (13.12) come semiclassically from the more distant
collisions. The momentum transfer 8p to the struck electron in such collisions is related
to the energy transfer T according to §p = (2mT)"?. On the other hand, the localized
electron wave packet has a spread Ap in transverse momenta. To be certain that the
collision produces an energy transfer less than e, we must have Ap < p. = (2me)'?,
hence Ab > #i/(2me)'”. The effective minimum impact parameter for soft collisions with
energy transfer less than ¢ is therefore

h
b ~ 13.17
mm(s) (2m8)1/2 ( )
For collisions so limited in impact parameter between (13.17) and b,,,,, = yv/{w), we find
yo(2me)'"?
B =~
q(a) h(w)

in agreement with Bethe’s result.

The semiclassical discussion of the minimum and maximum impact param-
eters elucidates the reason for the difference in the logarithmic growth between
the restricted and total energy losses. At high energies the dominant energy
dependence is through dE/dx o In(B) = In(by,4/bpmin)- For the total energy loss,
the maximum impact parameter is proportional to vy, while the quantum-
mechanical minimum impact parameter (13.16) is inversely proportional to y.
The ratio varies as y>. For energy loss restricted to energy transfers less than &,
the minimum impact parameter (13.17) is independent of v, leading to B, (&) o .



Despite its attractiveness in making clear the physics, the .semlclassmal de-
scription in terms of impact parameters contains a copceptual dlﬂ'ic_ulty.that war-
rants discussion. Classically, the energy transfer 7' in each 2(53111512[12 is related
directly to the impact parameter b. When b >> b$)., T(b) = 2z e'/mvb _(Problem
13.1). With increasing b the energy transfer decreases rapidly until at b =
bmax = Y/{w) it becomes

T(bmax) = %25 <%> (%’_‘f) i) (13.18)

Here v, = ¢/137 is the orbital speed of an electron in thg ground state of hydrogen
and I;; = 13.6 eV its ionization potential. Since empirically #{w) = ZIH,. we see
that for a fast particle (v >> v,) the classical energy transfer '(1.3.18) is mpch
smaller than the ionization potential, indeed, smaller than the minimum possible
atomic excitation. o

We know, however, that energy must be transferred to the atom in discrete
quantum jumps. A tiny amount of energy such as (13.18) sirpply cannot be ab-
sorbed by the atom. We might argue that the class1ca} expression for T(b) should
be employed only if it is large compared to some typical exc1t.at1.on energy of the
atom. This requirement would set quite a different upper limit on the impact
parameters from b,,,, = yv/{w) and lead to wrong results. Could bmax Nevertheless
be wrong? After all, it came from consideration qf the t.1me dependence of Fhe
electric and magnetic fields (11.152), without consideration of the systclam'bemg
affected. No, time-dependent perturbations of a quantum system cause mgmﬁcgnt
excitation only if they possess appreciable Fourier components with ‘f‘req.uenclle’s’
comparable to 1/ times the lowest energy difference: That was the ad1abat11.c
argument that led to b, in the first place. The soluthn to this copundrum lies
in another direction. The classical expressions must be interpreted in a statistical
sense. '

The classical concept of the transfer of a small amqunt of energy in every
collision is incorrect quantum-mechanically. Instead, while on the average over
many collisions, a small energy is transfer.red, the small average results fror?-
appreciable amounts of energy transferred in a very §mall fr.actlon qf t‘hose co
lisions. In most collisions no energy is transferred. It is only in a statistical sen;e
that the quantum-mechanical mechanism of discrete energy transfers and'lt de
classical process with a continuum of possible energy transfers can be T?CO'D% e ]
The detailed numerical agreement for the averages (bu.t‘not for the lndlYl uar
amounts) stems from the quantum-mechar}ical deﬁmtlons_ of the (')Sflll:it:(; ;
strengths f; and resonant frequencies w; entering ('a)). A meaningful sem%ct EZ -
description requires (a) the statistical 1pt§rpret§1t10n zznda r(:l)r)ngtl:rsuse 0

i rinciple to set appropriate minimum impact p -
Cert?li?lgydri)scussli)on so far l?ar; bgen about energy loss by. a heavy pa.rtlcle of mass
M >> m. For electrons (M = m), kinematic modiﬁcatlons occur in the e;neflfﬁz
loss in hard collisions. The maximum energy loss is Zmax = (y — Dmc". .
argument of the logarithm in (13.6) becomes (y — 1)mc?/e. The Bethe ex;l)rifrons
(13.12) for soft collisions remains the same. The total energy loss for ele
therefore has B, (13.15) replaced by

V2 BN Y S VT A2 pie®
i{w) = hw)

B, (electrons) = (13.19)

the last form applicable for relativistic energies. There are spin and exchange
effects in addition to the kinematic change, but the dominant effect is in the
argument of the logarithm; the other effects only contribute to the added
constant.

The expressions for dE/dx represent the average collisional energy loss per
unit distance by a particle traversing matter. Because the number of collisions
per unit distance is finite, even though large, and the spectrum of possible energy
transfers in individual collisions is wide, there are fluctuations around the aver-
age. These fluctuations produce straggling in energy or range for a particle tra-
versing a certain thickness of matter. If the number of collisions is large enough
and the mean energy loss not too great, the final energies of a beam of initially
monoenergetic particles of energy E, are distributed in Gaussian fashion about
the mean £. With Poisson statistics for the number of collisions producing a given
energy transfer 7' it can be shown (see, e.g., Bohr, Section 2.3, or Rossi, Section
2.7) that the mean square deviation in energy from the mean is

O = 2aNZZ%*(y* + 1)t (13.20)

where 1 is the thickness traversed. This result holds provided Q) << E and () <<
(Ey— E),and also Q > T, ~ 2v’B*mc?. For ultrarelativistic particles the last
condition ultimately fails. Then the distribution in energies is not Gaussian, but
is described by the Landau curve. The interested reader may consult the refer-
ences at the end of the chapter for further details.

13.3  Density Effect in Collisional Energy Loss

For particles that are not too relativistic, the observed energy loss is given ac-
curately by (13.14) [or by (13.9) if n > 1] for particles of all kinds in media of all
types. For ultrarelativistic particles, however, the observed energy loss is less than
predicted by (13.14), especially for dense substances. In terms of Fig. 13.1 of
(dEldx), the observed energy loss increases beyond the minimum with a slope of
roughly one-half that of the theoretical curve, corresponding to only one power
of yin the argument of the logarithm in (13.14) instead of two. In photographic
emulsions the energy loss, as measured from grain densities, barely increases
above the minimum to a plateau extending to the highest known energies. This
again corresponds to a reduction of one power of Y. this time in B, (e) (13.13).
This reduction in energy loss, known as the density effect, was first treated
theoretically by Fermi (1940). In our discussion so far we have tacitly made one
assumption that is not valid in dense substances. We have assumed that it is
legitimate to calculate the effect of the incident particle’s fields on one electron
in one atom at a time, and then sum up incoherently the energy transfers to all
the electrons in all the atoms with bmin < b < bpay. Now by, is very large
compared to atomic dimensions, especially for large y. Consequently in dense
media there are many atoms lying between the incident particle’s trajectory and
the typical atom in question if b is comparable to b,,,.. These atoms, influenced
themselves by the fast particle’s fields, will produce perturbing fields at the chosen
atom’s position, modifying its response to the fields of the fast particle. Said in
another way, in dense media the dielectric polarization of the material alters the
particle’s fields from their free-space values to those characteristic of macroscopic



fields in a dielectric. This modification of the fields due to polarization of the
medium must be taken into account in calculating the energy transferred in dis-
tant collisions. For close collisions the incident particle interacts with only one
atom at a time. Then the free-particle calculation without polarization effects will
apply. The dividing impact parameter between close and distant collisions is of
the order of atomic dimensions. Since the joining of two logarithms is involved
in calculating the sum, the dividing value of b need not be specified with great
precision.

We will determine the energy loss in distant collisions (b = a), assuming that
the fields in the medium can be calculated in the continuum approximation of a
macroscopic dielectric constant €(w). If a is of the order of atomic dimensions,
this approximation will not be good for the closest of the distant collisions, but
will be valid for the great bulk cf the collisions.

The problem of finding the electric field in the medium due to the incident
fast particle moving with constant velocity can be solved most readily by Fourier
transforms. If the potentials A, (x) and source density J,(x) are transformed in
space and time according to the general rule,

F(x, t) =

2 )ZJ d’k j dw F(k, w)e™> ! (13.21)

then the transformed wave equations become

‘: 7 (k. o)

[kz - “’—2 e(w)]A(k, o) = T3k, )
(04 C

[kz - — e(w)]dJ(k w) =
(13.22)

The dielectric constant e(w) appears characteristically in positions dictated by
the presence of D in the Maxwell equations. The Fourier transforms of

p(x, 1) = ze 8(x — Vi)
and (13.23)
J(x, 1) = vp(x, 1)

are readily found to be

ze
w) =— 86w —k-
plk, @) = 7 (0~ k-¥) e

From (13.22) we see that the Fourier transforms of the potentials are

ZZe'é(w—k-v)

Pk 0) =

2
K -2 e(w)
¢ (13.25)
and

Ak, 0) = €(w) g Ok, )

From the definitions of the electromagnetic fields in terms of the potentials we
obtain their Fourier transforms:

Ek, o) = [——“’E(“’) ez k]CI)(k, )
c (13.26)
B(k, 0) = ie(w)k X EQD(k, ®)

In calculating the energy loss to an electron in an atom at impact parameter b,
we evaluate

AE = —ef v-E dt = 2e Re f iwx(w) + E*(w) do (13.27)
—o0 0

where x(w) is the Fourier transform in time of the electron’s coordinate and E(w)
is the Fourier transform in time of the electromagnetic fields at a perpendicular
distance b from the path of the particle moving along the x axis. Thus the required
electric field is

E(w) = f &k E(k, w)e* (13.28)

(2 )3/2

where the observation point has coordinates (0, b, 0). To illustrate the determi-
nation of E(w) we consider the calculation of E(w), the component of E parallel
to v. Inserting the explicit forms from (13.25) and (13.26), we obtain

B 2ize 3y bk, we(w)v 8(w — vky)
E(w) = —e(w)(277)3/2 j d’ke [————Cz kl] ——— o (13.29)

The integral over dk, can be done immediately. Then

2i 1 . -
El(w) = _—lz_eu)_ |:_ _ 2] Jl dk2 elbk2 Jﬁ dk';

Q)"0 [ e(w) <K+ KE + A2
where
o & w’
A= ey e(w) = [1 — B’e(w)] (13.30)

The integral over dks has the value 7/(A* + k%)”z, so that E,(w) can be written

_izew ” etk
E(w) = o L(w) B ] f_x T dk, (13.31)

The remaining integral is a representation of a modified Bessel function.* The

result is
izew (2\°[ 1
Ey(w) = —— <—> [ = BZ]KU(M)) (13.32)

v T e(w)

*See, for example, Abramowitz and Stegun (p. 376, formula 9.6.25); Magnus, Oberhettinger, and Soni
(Chapter XI), or Bateman Manuscript Project, Table of Integral Transforms, Vol. 1 (Chapters I-111I).



where the square root of (13.30) is chosen so that A lies in the fourth quadrant.
A similar calculation yields the other fields:

Jze (27 A,
Ey(w) = - <7T> () K, (Ab) (1333)

Bs(w) = €(w)BEy(w)

In the limit e(w) — 1 it is easily seen that fields (13.32) and (13.33) reduce to the
results of Problem 13.3.

To find the energy transferred to the atom at impact parameter b we merely
write down the generalization of (13.27):

AE(b) = 2¢ 3, f; Re f: iox;(0) - E*(w) do

where x;() is the amplitude of the jth type of electron in the atom. Rather than
use (7.50) for x;(w) we express the sum of dipole moments in terms of the mo-
lecular polarizability and so the dielectric constant. Thus

oS fix o) = 5 [e(0) — 1E(@)

where N is the number of atoms per unit volume. Then the energy transfer can
be written

AE(b) = ﬁ\/ Re f: —iwe(w) |E(w)]* do (13.34)

The energy loss per unit distance in collisions with impact parameter b=a
is evidently

dx
If fields (13.32) and (13.33) are inserted into (13.34) and (13.35), we find, after
some calculation, the expression due to Fermi,

> s
ﬁ> = Gae) Re f iw)\*aKl()\*a)Ko(/\a)<—1— = [32) do (13.36)
dx Jpou ™ V* 0 e(w)

where A is given by (13.30). This result can be obtained more elegantly by cal-
culating the electromagnetic energy flow through a cylinder of radius a around
the path of the incident particle. By conservation of energy this is the energy lost
per unit time by the incident particle. Thus

d_E :ld—Ev: ——L 27TaB3E1 d.x
dx b>a v dt 47TU -

The integral over dx at one instant of time is equivalent to an integral at one
point on the cylinder over all time. Using dx = v dt, we have

dE ca J’w
seke gl s Bs(t)E (1) dt
<dx>b>a 7o S(DE (1)

(dE > = 2aN f AE(b)b db (13.35)
b>a a

In the standard way this can be converted into a frequency integral,

AN the valy Rej BY(@)E;(0) dw (13.37)
dx b>a 0

With fields (13.32) and (13.33) this gives the Fermi result (13.36).

The Fermi expression (13.36) bears little resemblance to our earlier results
for energy loss. But under conditions where polarization effects are unimportant
it yields the same results as before. For example, for nonrelativistic particles
(B << 1) it is clear from (13.30) that A = w/v, independent of e(w). Then in
(13.36) the modified Bessel functions are real. Only the imaginary part of 1/€(w)
contributes to the integral. If we neglect the polarization correction of Section
4.5 to the internal field at an atom, the dielectric constant can be written

e(w) =1+

(13.38)

2 _ 2 _ .
7w — iol;

47rNe? ¥ fi

m
where we have used the dipole moment expression (7.50). Assuming that the
second term is small, the imaginary part of 1/e(w) can be readily calculated and
substituted into (13.36). Then the integral over dw can be performed in the
narrow-resonance approximation. If the small-argument limits of the Bessel
functions are used, the nonrelativistic form of (13.9) emerges, with B, =
vla{w). If the departure of A from w/yv in (13.30) is neglected, (13.9) emerges
with B, = yv/a{w).

The density effect evidently comes from the presence of complex arguments
in the modified Bessel functions, corresponding to taking into account €(w) in
(13.30). Since €(w) there is multiplied by 7, it is clear that the density effect can
be really important only at high energies. The detailed calculations for all ener-
gies with some explicit expression such as (13.38) for e(w) are quite complicated
and not particularly informative. We content ourselves with the extreme relativ-
istic limit (8 = 1). Furthermore, since the important frequencies in the integral
over dw are optical frequencies and the radius a is of the order of atomic dimen-
sions, |Aa| ~ (walc) << 1. Consequently we can approximate the Bessel functions
by their small-argument limits (3.103). Then in the relativistic limit the Fermi
expression (13.36) is
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(13.39)

It is worthwhile right here to point out that the argument of the second logarithm
is actually [1 — B°€(w)]. In the limit € = 1, this log term gives a factor y in the
combined logarithm, corresponding to the old result (13.9). Provided e(w) # 1,
we can write this factor as [ — €(w)], thereby removing one power of y from
the logarithm, in agreement with experiment.

The integral in (13.39) with €(w) given by (13.38) can be performed most
easily by using Cauchy’s theorem to change the integral over positive real  to
one over positive imaginary w, minus one over a quarter-circle at infinity. The
integral along the imaginary axis gives no contribution. Provided the I'; in (13.38)



are assumed constant, the result of the integration over the quarter-circle can be
written in the simple form:

(d_E> _ (ze ‘), 1n<1.123c> (13.40)
b>a

2
dx c aw,

where w, is the electronic plasma frequency

2
P m
The corresponding relativistic expression without the density effect is
2 2
dE\ _ (ze)'w, ln<1.123yc> (13.42)
dx b>a C2 a(w)

We see that the density effect produces a simpliﬁcatiop in that the asymptotic
energy loss no longer depends on the details of atomic structure through (w)
(13.11), but only on the number of electrons per un.lt volume through w,. Two
substances having very different atomic structures will produce the same energy
loss for ultrarelativistic particles provided their densities are such that the density
of electrons is the same in each. ’

Since there are numerous calculated curves of energy loss.based on Bethe’s
formula (13.14), it is often convenient to tabulate the decrease in energy loss. due
to the density effect. This is just the difference between (13.40) and (13.42):
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Figure 13.2 Energy loss, including the density‘ effect. The dashed curve 1sf‘l£hett0tal
energy loss without density correction. The solid curves have the density e lfc .
incorporated, the upper one being the total energy loss and the lower one the energy
loss due to individual energy transfers of less than 10 keV.

For photographic emulsions, the relevant energy loss is given by (13.12) and
(13.13) with & = 10 keV. With the density correction applied, this becomes con-
stant at high energies with the value,

dE(e) (ze)’w}  (2mc3e
—= 5 In| ==
dx 2c hw;,

(13.44)

For silver bromide, hw, = 48 eV. Then for singly charged particles (13.44), di-
vided by the density, has the value of approximately 1.02 MeV - (cm®/g). This
energy loss is in good agreement with experiment, and corresponds to an increase
above the minimum value of less than 10%. Figure 13.2 shows total energy loss
and loss from transfers of less than 10 keV for a typical substance. The dashed
curve is the Bethe curve for total energy loss without correction for density effect.

13.4 Cherenkov Radiation

The density effect in energy loss is intimately connected to the coherent response
of a medium to the passage of a relativistic particle that causes the emission of
Cherenkov radiation. They are, in fact, the same phenomenon in different lim-
iting circumstances. The expression (13.36), or better, ( 13.37), represents the en-
ergy lost by the particle into regions a distance greater than b = q away from its
path. By varying a we can examine how the energy is deposited throughout the
medium. In (13.39) we have considered a to be atomic dimensions and assumed
[Aa| << 1. Now we take the opposite limit. If [Aa| >> 1, the modified Bessel
functions can be approximated by their asymptotic forms. Then the fields (13.32)
and (13.33) become
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Bs(w, b) = Be(w)Es(w, b)

The integrand in (13.37) in this limit is

5 z%e? CAE 1 B}
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The real part of this expression, integrated over frequencies, gives the energy
deposited far from the path of the particle. If A has a positive real part, as is
generally true, the exponential factor in (13.46) will cause the expression to van-
ish rapidly at large distances. All the energy is deposited near the path. This is
not true only when A is purely imaginary. Then the cxponential is unity; the
expression is independent of a; some of the energy escapes to infinity as radiation.
From (13.30) it can be seen that A can be purely imaginary if e(w) is real (no
absorption) and B%e(w) > 1. Actually, mild absorption can be allowed for, but




