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A swift particle of charge ze and mass M (ene rgy E = yM c2 , mom entum P =

yf3Mc) collides with an atomic electro n of cha rge - e and mass m . Fo r energetic
collisions the bind ing of the electro n in the atom ca n be neglect ed ; the electron
can be conside red free and initially at rest in the lab orator y. For all incident
particl es except electrons and positrons, M » m , Th en the collision is best
viewed as e lastic Cou lomb sca tte ring in the rest fra me of the incident particle .
Th e well-know n Rutherford scattering fo rm ula is

( )

2
de ze2 e
dO = 2pu cosec" 2

da 27TZ 2e4

dT mc2f32T2

Equation (13.3) is the cross section per unit energy int erval for ene rgy loss T by
the massive incident particl e in a Co ulomb collision with a free sta tionary elec­
tron. Its ran ge of validity for actual collisions in matter is

tran sition radi ation by a particl e passing fro m on e medium to another of differ ent
optical properties.

where p = yf3mc and u = f3c are the mom entum and speed of the electro n in
the rest fram e of the hea vy particle (exact in the limit Mlm ~ 00 ). The cross
section can be given a Lorentz-invari ant form by re lating the scatte ring angle to
the 4-momentum transfer squared, Q2 = - (p - p '? Fo r elastic sca ttering,
Q2 = 4p 2 sin2(eI2) . T he res ult is

do ( ze2)2
dQ2 = 47T f3CQ2 (13.2)

wher e f3c, the relative speed in each particle 's rest fr ame, is fo und from 132 =
1 - (Mmc 2IP' p?

The cro ss section for a given ene rgy loss T by the incid ent particle, that is,
the kineti c ene rgy imp arted to the initi ally sta tiona ry electro n, is pr op ortion al to
(13.2) . If we evaluate the invari ant Q2 in the electro n's rest frame. we find Q2 =
2m T. With Q2 repl aced by 2m T, (13.2) becomes

Tm in < T < Tm ax

with Tm in se t by our neglect of binding ( Tm in 2:: h(w) wher e Ii(w) is an es tima te
of the mean effective ato mic bindin g energy) and Tm ax governed by kinem ati cs.
We can find Tm ax by recognizing that the most energ etic collision in the res t fram e
of the incid ent particle occurs when the elect ro n reverses its direction. After such
a .colli.sion, the e l~ct~on has e~ergy E ' = vmc ? and mom entum p ' = yf3mc in the
dir ection of the incident particle 's velocity in the lab oratory. Th e boost to the
laboratory gives

Energy Transfer in a Coulomb Collision Between Heavy
Incident Particle and Stationary Free Electron;
Energy Loss in Ha rd Collisions

13.1

In this cha pter we consider collisions between swiftly moving, charged particles,
with spec ial emphasis on the excha nge of ene rgy bet ween collision partners
and on the accompanying deflection s fro m the incident dir ection . We also
treat Chere nkov radiation and transition radi ation, ph enomena associated with
charged particles in uniform motion through material media.

A fast charged particle incident on matter makes collisions with the atomic
electrons and nuclei . If the particle is heavier than an electron (mu or pi meson,
K meson , proton, etc.), the collisions with electrons and with nucl ei have different
consequences. Th e light electrons can take up appreciable amo unts of energy
from the incid ent particle without causing significant deflections, whereas the
massive nuclei absor b ver y little ene rgy but because of their greater charge cause
scatt ering of the incid ent particle . Thus loss of ene rgy by th e incident particle
occurs almost entirely in collisions with electrons. T he deflection of the particle
from its incident direction results, on the other hand, from esse ntially elastic
collisions with the atomic nucl ei . Th e scatte ring is confined to rather small angles,
so that a heavy particle keeps a more or less stra ight-line path while losing en ergy
until it near s the end of its ran ge. Fo r incident electro ns both energy loss and
scattering occur in collisi ons with the atomic electro ns. Co nsequently the path is
muc h less straight. After a short dist ance, electro ns tend to diffuse into the ma­
terial, rather than go in a rectilinear path .

Th e subject of energy loss and scatte ring is an imp ortant on e and is discussed
in seve ra l books (see referen ces at the end of the cha pte r) where num erical tabl es
and graphs are presented. Co nse que ntly our discussion emphasizes the physical
ideas involved , rather than the exact numerical formulas. Indeed , a full qua ntum­
mechanical treatment is need ed to obta in exa ct results, even tho ugh all the es­
sential features are classical or semiclassical in origin. All the order s of magnitude
of the quantum effects ar e eas ily deriv able from the uncertainty principle, as will
be seen.

We begin by conside ring the simple probl em of energy transfer to a free
elec tro n by a fast heavy par ticle. Then the effects of a binding force on the
electron are exp lored, and the classical Boh r formula for ene rgy loss is ob tained.
A description of qu antum modificati ons and the effect of the polarization of the
medium is followed by a discussion of the closely related phenomenon of
Che renkov radia tion in transparent mat erials. Then the elastic scattering of in­
cident particles by nuclei and multip le scattering are presented. Finally, we tre at

CHAPTER 13

Collisions, Energy Loss, and
Scattering of Charged Particles;
Cherenkov and Transition Radiation
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where

(13.8)

(13.9)

(13.10)

(13.13)

b (C) _ yu
max .......... (w)

_ 'Yu(2me) 1/2
Bq(e) - h(w )

The effe ctive excita tion energy h(w ) is given by (13.11) , bu t now with the proper
quantum-mechanical oscillator strengths and fre quency differences for the atom ,
including the contribution from the continuum. The upp er limit e on the energy

where

Th e ene rgy loss in collisions with energy tra nsfers less than e, including tbose
small compared to electro nic binding ene rgies , rea lly can be trea ted properly
onl y by qu antum mechanics, altho ugh afte r the fact we can "explain" the res ult
in semiclass ical language. The result , first obta ine d by Beth e (1930) , is

dE Z2e4

-d (T < e) = 21TNZ - 2-2 \In[B~ (e)] - f3 2J (13.12)
x me 13

Eq ua tion (13 .10) is va lid fo r T/ > 1 (re lat ive ly slow alpha particl es, heavy nucl e i) but
overesti mates th e energy loss whe n T/ < 1 (muo ns. protons, even fast a lpha particles). We
see below tha t when T/ < 1 th e correct res ult se ts T/ = 1 in ( 13.10).

y f33mc3 y f3zmez
B = ,1 = ,1 -'----'.:..---.:..::-

C zeZ(w) T/ fi (w)

In (13.10) we have inserted a num erical con stant A of th e o rder of uni ty to allow for our
uncer tainty in b~~!, x. Th e par am et er T/ = ze21hu is a characteris tic of qua nt um- mec ha nical
Co ulomb scattering: T/ « 1 is the strongly quantum limi t; T/ » 1 is the class ical limit.

E qua tio n (13.9) with (13.10) conta ins the essentia ls of th e classica l ene rgy loss for­
mul a derived by Niels Bohr (1915). With man y different elec tronic frequ en cies, (w) is the
geometric mean of all the freq uencies Wi' weight ed wit h the oscillato r strength Ii:

Z In(w) = L i, In Wi (13.11)
i

fre quency of moti on (w) or it reciproca l, th e per iod. T he incid ent heavy parti cle pr oduces
appreciable time-varying elec tromagnetic fields at th e ato m fo r a tim e /1t = blyu [see
(11 .153) ]. If th e characteri st ic tim e /1t is lon g co mpared to the atomic period , the atom
responds adiabatically-it stre tches slow ly du ring the enco unter and returns to norm al ,
without appreciable en ergy bein g transferred . On the o ther hand , if /1t is ve ry sho rt com­
pa red to the characteristic period, the e lectro n can be tr eat ed as almos t free. T he dividing
line is (w)/1t = 1, implying a maximu m effective impact parameter

beyon d which no significant ene rgy transfer is possib le . Ex plicit illust ration of this cutoff
for a char ge bo und harmonically is found in Problems 13.2 and 13.3.

If (13.8) is used in (13 .7) instead of b~~!\X ( e) . the total classical energy loss per unit
distance is approxima tel y

13.2 Energy Lossfrom Soft Collisions; Total Energy Loss

Substit ut ion of bmax and bmin leads directl y to (13 .6), apar t fro m the relat ivist ic spin cor­
rec tion. T hat we ob tain th e same result (for a spinless particle) qua nt um mechanically
and classicall y is a consequence of the validity of the R utherford cross section in both
reg imes.

If we wish to find a class ical result for the to tal ene rgy loss per unit distance, we mu st
address the influen ce of atomic binding. E lec tro nic binding ca n be cha ra cte rized by the

An alt ernati ve , classical or se miclassica l approach th ro ws a differ ent light on th e
ph ysics of energy loss. In th e rest fram e of th e heavy particle th e incid en t elec tron ap ­
pro aches at imp act parameter b . There is a one-to-one co rrespondence between b and
the sca ttering ang le () (see Problem 13.1) . T he energy tra nsfer T can be written as

2z2e4 1
T(b) = -. - - -

mu2 b2 + b~I,~

with b~~ln = ze'I p». For b » b~ln the ene rgy transfer varies as o:>. imp lying th at, if the
ene rgy transfer is greate r th an e , the impact para met er mu st be less than th e maximum,

b (c) (e) = (2z
Z
e
4
) JI2

max ntuZe

The ene rgy loss per unit distance in collisions with energy transfer greater
than e for a heavy particle passing through matter with N ato ms per unit volume,
eac h with Z electrons, is given by the integral,

dE IT",,,x dCT
dx (T > e) = NZ e TdTdT _

(13.6)

Z2e4 [(2'Y
2

f3 2me2) ]= 21TNZ -- In - 132
me2f3 2 e

In the result (13.6) we assumed e « Tmax and used (13.5) for the energy-transfer
cross section . Th e sma ll term, - 13 2

, in the square brackets is the relativistic spin
contribution. Equation (13.6) rep resents tbe energy loss in close collisions. It is
onl y valid provided e » h(w ) because bind ing has been igno red.

When the heavy particle pas ses through matter it " sees" electrons at all possible impact
paramete rs , with weighting according to th e ar ea of an annulus, 21Tb db. The classical
energy loss pe r unit distan ce for co llisions with tra nsfe r greater th an e is the refore

ddE (T > e) = 21TNZ r~~x<· ) T(b)b db = 27TNZ ZZ: 4
Z

I n[ (b~~;}e» ) 2] (13.7)
x a me f3 bmin

We note in passing that (13.4) is not correct if the incident particle has too high
an energy. Th e exact answer for Tm ax has a factor in the denomin ator , D =
1 + 2mEIM2e2 + m 2/M 2

• For mu ons (Mlm = 207) , the denominator must be
taken int o accoun t if the energy is comparable to 44 GeV or greater. For pro­
tons that energy is ro ughly 340 GeV . For equal masses, it is easy to see that
Tma x = ('Y - 1)me2

.

When the spin of the electro n is taken into acco unt, there is a quantum­
mechanical correction to the ene rgy loss cross section, namely, a factor of
1 - 132 sin2

( 8/2) = (1 - 132 TITmax ):

(
dCT) 21Tz2e4 ( T )- = 1 - 13 2

-
dT q m m e2f3 2T 2 Tm ax



(13.16)

Comparison of Bq with the classical Be (13.10) shows that their ratio is YJ = ze2/hu.
To understand how this factor arises, we turn to semiclassical arguments. Be is the ratio
of b~;~x (13.8) to b~ln = ze2l ymu2

. The uncertainty principle dictates a different bm;n for
YJ < 1. In the rest frame of the heavy particle the electron has momentum p = vmu . If it
is described by a transversely localized wave packet (to define its impact parameter as
well as possible), the spread in transverse momenta S p around zero must satisfy Sp « p ;
otherwise, its longitudinal direction would be ill-defined. This limit on Sp translates into
an uncertainty Sb in impact parameter, Sb » hlp , or in other words, an effective quan­
tum-mechanical lower limit,

has a different ene rgy varia tion and dep endence on the mat erial , because of the
density effect discussed in Section 13.3.

The restricted ene rgy loss shown in Fig. 13.1 is applicable to the energy loss
inferred from tracks in ph otographic em ulsions. Electrons with energies greater
than abou t 10 keY have sufficie nt ran ge to escape from silver bromide grains.
The den sity of blac kening along a track is therefore re lated to the restricted
energy loss. Note tha t it increases more slow ly than the to ta l for large y{3-as
In( "I) rat her than In ( "12

) . A semiclass ica l explana tion is given below.

in agreement with Bethe's result.

('I) ( ) ~ hbm;n e - (2ms) I/2 (13.17)

For collisions so limited in impact parameter between (13.17) and bmax = yu l(w), we find

yv(2ms) 112

Bq(s) = h(w )

Evidently, in calculating energy loss as an integral over impact parameters, the larger
of the two minimum impact parameters should be used. The ratio b~~?,Ib;:;{" = YJ . When
YJ > 1, the classical lower limit applies; for YJ < 1, (13.16) applies and (13.15) is the correct
expression for B.

The value of Bq(s) in (13.12) can also be understood in terms of impact parameters.
The soft collisions contributing to (13.12) come semiclassically from the more distant
collisions. The momentum transfer op to the struck electron in such collisions is related
to the energy transfer T according to op = (2mT) I/2 On the other hand, the localized
electron wave packet has a spread 6.p in transverse momenta. To be cert ain that the
collision produces an energy transfer less than e, we must have 6.p < oPmax = (2ms) l/2 ,

hence Sb > hl(2ms)l l2. The effective minimum impact parameter for soft collisions with
energy transfer less than e is therefore

The s~miclassicaI discussion of the minimum and maximum impact param ­
eters elu~ldates th e reason for th e difference in the logarithmic gro wth between
th e restn cted and total ene rgy losses. At high ene rg ies th e do mina nt ene rgy
depende~ce is t~rough dE/dx oc In(B) = In(bmaxlbmin)' Fo r the tot al energy loss,
th e ma~rmum. ~rnpaet . parameter is proportional to "I, while th e q uan tu m­
meehan.lcal ~lllimun; imp act parameter (1~.16) is inversely propo rt io na l to y.
T he rati o vanes as "I . For ene rgy loss restncted to ene rgy tran sfers less than e
th e minimum impa ct paramet er (13.17) is independen t of "I, lea ding to B q (e) oc "I:

(13.15)

y f3

Figure 13.1 Energy loss as a function of y{3 of the incident heavy particle. The solid
curve is the total energy loss (13.14) with h(w ) = 160 eV (aluminum). The dashed curve
is the energy loss in soft collisions (13.12) with S = 10 keY. The ordinate scale
corresponds to the curly-bracketed quantities in (13.12) and (13.14) , multiplied by 0.15.

The general behavior of both the classi ca l and quantum-mechani cal en ergy
loss formulas is illustrat ed in Fig . 13.1. They are functio ns only of the speed of
the incident heavy particle , th e mass and char ge of th e e lectron, and th e me an
excita tion ene rgy h(w). For low ene rgies (y{3 < 1) the main dep endence is as
1/{32, while at high ene rgies th e slow variation is proportion al to In(y). The min­
imum valu e of dE/dx occurs at y{3 = 3. The coefficient in (13.12) and (13.14) is
numerically equal to 0.150 z2(2Z/A )p MeV/cm , where Z is th e atomic number
and A the mass number of the material , while p (g/cm ' ) is its den sity. Since
2Z/A = 1, th e ene rgy loss in Me V · (cmvg) for a singly charged particle in alu­
minum is approximately what is shown in Fig. 13.1. For aluminum the minim um
energy loss is ro ughly 1.7 MeV · (cm v g) ; for lead, it is 1.2 MeV· (cm v g) . At high
energies correction s to the beh avior in Fig. 13.1 occur. The ene rgy loss becomes
heavy-particle spe cific, through the mass-depend ent den ominat or D in Tmax> and

whe re

transfers is assumed to be beyond the limit of ap preciab le oscillator stre ngth .
Such a limit is consonant with the lower limit e in Section 13.1, cho sen to make
the electro n essentia lly free.

The total energy loss per unit len gth is given by the sum of (13.6) and (13.12):

dE _ Z2 e4 2
-d - 4rrNZ - 2- 2 {In(B q ) - {3 } (13.14)

x me (3



(13.18)

(13.19)

Despite its attractiveness in making clear the physics, the semiclassical de­
scrip tion in terms of impact parameter s contains a conceptual difficult y that war ­
rants discussion . Classically, the energy transfer T in each collision is related
directly to the impact par ameter b. Wh en b » b~ln, T( b) = 2z2e41mv2b2(Problem
13.1). With increasing b the ene rgy transfer decreases rap idly until at b =
bm ax = yu/(w ) it becomes

( )
4 ( )

Z2 va h(w )
T(bmaJ = .-/ -;; I;; h(w)

H ere va = d 137 is the or bita l speed of an elec tro n in the gro und sta te of hydrogen
and IH = 13.6 eV its ion ization poten tial. Since empirica lly h(w ) :5 Z IH , we see
that for a fas t particle (v » va) the classical energy transfer (13.18) is much
sma ller than the ionization pot ential, indeed , sma ller than the minimum possible
atomic excitation.

We know, however , that energy must be transferred to the ato m in discrete
quantum jumps. A tiny amount of ene rgy suc h as (13.18) simply cannot be ab­
sorbed by the ato m. We might argue that the classical express ion for T(b) shoul d
be employe d only if it is large compa red to some typical excita tion energy of the
atom. T his requirement would se t quite a different upp er limit on the impact
parameter s from bm ax = -yvl(w ) and lead to wrong resul ts. Co uld bm ax never theless
be wron g? After all, it came from consideration of the tim e dep endence of the
electric and magneti c field s (11.152), without consider ati on of the system being
affected. No, time-dependent perturbations of a qu antum system cause significant
excita tion only if they po ssess appreciable Fourier components with frequencies
comparable to 1/h tim es the lowest energy differ ence. T ha t was the " adiabatic"
arg ume nt that led to bm ax in the first place . Th e solution to this conundrum lies
in another direction . The classical expressions must be interpreted in a sta tistical
sense.

Th e classical concept of the transfer of a sma ll amount of energy in every
collision is incorrect qu antum-mechanically. Instead , while on the average over
many collisions , a sma ll ene rgy is transferred , the sma ll ave rage resu lts from
apprec iable amo unts of ene rgy transfer red in a very sma ll fra ction of thos e col­
lision s. In most co llision s no ene rgy is transferred . It is only in a sta tistical sense
that the quantum-mechanical mechanism of discr et e ene rgy transfers and . the
classical pr ocess with a continuum of possible ene rgy tran sfers can be r~co?~lled .

T he det ailed numerical agreem ent for the averages (but not for the individual
amo unts) stems fro m the qu an tum -mechan ical definiti ons of the oscillator
stre ngths i ,and resonant fre quencies W j ente ring (w). A meaningful semiclassical
description requires (a) the sta tistica l in terpret ation and (b) the use of the un­
cer tain ty principle to se t appro pria te minimum imp act parameter s. .

Th e discussion so far has been abo ut energy loss by a heavy particle of mass
M » m. For electrons (M = m) , kin ematic modificati ons occu r in the ~nergy

loss in hard collisions. T he maximum energy loss is Tm ax = (-y - l)mc . ~he
argume nt of the logarithm in (13.6) becom es (-y - l)mc2/e . The Bethe expression
(13.12) for soft co llisions remains the same. T he tot al ene rgy loss for electrons
ther efore has Bq (13.15) re place d by

v'2 -y,Bv:r=1 m c2 v'2 -y3/2 m c2

Be/ electrons) = h(w) = h(w)

the last form applicable for relativi stic ene rgies . There are spin and excha nge
effects in addition to the kin ematic cha nge , but the dominant effect is in the
argume nt of the logarithm ; the other effects only con trib ute to the add ed
constant.

T he express ions for dEldx represent the average collisional energy loss per
unit distance by a particl e traver sing matter. Becau se the number of collisions
per unit distanc e is finite, even thou gh lar ge, and the spec trum of possib le energy
transfers in indi vidual collisions is wide , there are fluctuat ions around the aver­
age . T hese fluctu at ions produce straggling in energy or ra nge for a part icle tra­
versing a certa in thickness of matter. If the nu mb er of collisions is large enough
and the mean energy loss not too great, the final energies of a beam of initially
mon oen erget ic particles of energy Eo are distributed in Gaussian fas hion abo ut
the mean E. With Poisson sta tistics for the number of collisions producing a given
energy transfer T, it can be shown (see, e.g., Bohr , Section 2.3, or Rossi, Section
2.7) that the mean square deviati on in ene rgy fro m the mean is

n2 = 27TNZz 2e4
( -y2 + l)t (13 .20)

wher e .0s the thickn ess traversed. Thi s result hold s provided n « E and n «
(Eo - E ), and also n » Tm ax = 2l,B2mc2 . For ultrar elativistic particles the last
condition ult imately fai ls. Th en the distribution in energ ies is not Ga ussian but
is descri bed by the Landa u curve. The inter ested reader may consult the refer­
ences at the end of the chapter for further details.

13.3 Density Effect in Collisional Energy Loss

For particles tha t are not too relativistic, the observed ener gy loss is given ac­
curat ely by (13.14) [or by (13.9) if Y/ > 1J for particles of all kinds in media of all
types. For ultrarelativi stic particles, how ever , the observed ene rgy loss is less than
predicted by (13.14), especially for den se substances . In terms of Fig. 13.1 of
(dEldx) , the observed energy loss increases beyond the minimum with a slope of
roug?l y on e-half that of the theoretic al curve, corres po nding to only one power
of -y I~ the argume nt of the logarithm in (13.14) instead of two. In ph ot ographic
em ulsions the energy loss, as measured from grain de nsities, barely increases
abo.ve the min imum to a plateau extending to the highest known energies. Thi s
again c~mespon.ds t? a reduction of one power of -y, this time in Bi E) (13.13).

ThIS reduction III energy loss, known as the density effect, was first trea ted
theoreti call y by Fermi (1940). In our discussion so far we have tacitly mad e one
assumption that is not valid in dense substances . We have assume d that it is
legitim ate to calcu lat e the effect of the incident particle 's fields on one electron
in on e atom a ~ a time, and then sum up incoher en tly the ene rgy transfer s to all
the electro ns III al! th~ a to~s with bm in < b < bm ax ' Now b

m ax
is very lar ge

com~ared to ato mic dim ensions, especia lly for lar ge -y. Co nsequently in dense
medi a ~here are many atoms lying be tween the incident parti cle 's traj ecto ry and
the typical atom in quest ion if b is comparab le to bmax' These atoms, influen ced
themselves by the fast parti cle 's fields, will produce per turbing fields at the chos en
atom's position , modifying its res ponse to the field s of the fast particle. Said in
another way, in dense media the dielectric polarization of the mat erial alt er s the
particl e 's field s from their free-space valu es to tho se characteri stic of macr oscopic



The dielectric con stant €(w) appears charact eri sticall y in po sitions dict ated by
the presence of D in the Maxwell equations. The Fourier transforms of

fields in a die lectric. This modification of the fields du e to polarization of the
medi um must be tak en into account in calculating the energy transferred in dis­
tant collisions. For close collisions the incid ent particle interacts with onl y one
atom at a time. Then the free-particle calcul ation without po larization effects will
apply. Th e dividing impact parameter between close and distant collisions is of
the orde r of ato mic dim ensions. Since the join ing of two logar ithms is involved
in calcul ating the sum , the dividing value of b need not be specified with great
pr ecision .

We will det ermine the ene rgy loss in distant collisions (b ~ a), assuming that
the fields in the medium can be calculated in the continuum approxima tion of a
macroscopic diel ectric constant €(w). If a is of the order of atomic dimensions,
this approximation will not be goo d for the closest of the distant collisions, but
will be valid for the great bulk of the collisions.

Th e problem of finding the electric field in the medium due to the inciden t
fast particle moving with con stant velocity can be solved most readil y by Fo urier
transforms. If the potentials A!L(x) and source den sity J!L(x) are transformed in
space and tim e according to the genera l rul e,

(13.26)

(13.27)

(13.28)

(13.30)

(13.31)

(13.32)

[ W€(W).. }E(k, w) = i - c- ~ - k <l>(k , w)

B(k, w) = i€(w)k x ~ <l>(k , w)

izeto (2) 1/2[ 1 ]
E1(w) = -7 -; €(w) - f3 2 KaUtb )

11£ = - e fWv· E dt = 2e Re ( '" iwx(w) • E*(w) dw
-00 Jo

E(w) = _1_ f d3k E(k w)eibk]
(217)3/2 '

where the observation point has coordinates (0, b, 0). To illustrate the determi­
nation of E (w) we consider the calcul ation of E 1(w), the component of E parallel
to v. Inserting the explicit forms from (13.25) and (13.26) , we obta in

Ej(w) = 2ize , f d3keibk] [W€(W)U _ k
l

] <S(w - uk l ) (13.29)
€(W) (217) ~/2 c2 2 w2

k - 2 €(w)

In calcu lating the energy loss to an electron in an atom at impac t par amet er b,
we evaluate

From the definitions of the electromagnetic fields in terms of the potentials we
obtain their Fourier tra nsforms:

wher e x(w) is the Fouri er transform in tim e of the electro n's coo rdina te and E(w)
is the Fourie r transform in time of the elec tromagne tic field s at a perpendicular
distance b from the path of the particl e moving along the x axis. Thus the required
electric field is

where

*See, for example, Abramow itz and Stegun (p. 376, formul a 9.6.25); Magnus, Oberhettinger, and Soni
(Chapter XI) , or Bateman Manu script Project, Tab le of Integral Transforms, Vol. I (Chapters 1-1lI).

The remaining in tegral is a representation of a modifi ed Bessel function." Th e
result is

The integra l over dk; can be don e imm ediately. Th en

( 2izew [ 1 2] fW ibk f '" dk3
£ 1 w) = - (217)3/2U2 €(w) - f3 - 00 dk; e 2 - 00 k~ + k~ + ,\2

(13.25)

(13.24)

(13.23)

(13.22)

(13.21)

J (x, t) = vp(x, t)

ze
p(k , w) = - <S(w - k . v)
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J (k , w) = vp(k , w)

p(x, t) = ze <s (x - vt)

v
A (k, w) = €(w) - <l>(k, w)

c

[
w

2
] 417

k2 - 2 €(w) <l>(k , w) = €(w) p(k , w)

[
w

2
] 417k2 - 2 €(w) A (k , w) = ~ J(k , w)

F(x, t) = (2~)2 f d3k f dw F(k , w)eik.x- iwr

and

From (13.22) we see that the Fourier transform s of the potentials are

2ze <S( w - k · v)
<l>(k, w) = - ( ) . 2

e W k2 _ ~ €(w)
c2

ar e readil y found to be

and

then the transformed wave equations become



(13.38)

(
dE ) 2(ze? f oo (1 ){ (1.123C) 1 }- = - -- Re iw -- - 1 In -- - - lo[l - E(W)] dw
dx b>a 7T c2 0 E(W) wa 2

(13.39)

It is worthwhile right here to point out that the argument of the second logarithm
is actually [1 - f3 2E(W)] . In the limit E = 1, this log term gives a factor y in the
combined logarithm, corresponding to the old result (13.9) . Provided E(W) =1= 1,
we can write this factor as [1 - E(W)] , thereby removing one power of y from
the logarithm, in agreement with experiment.

The integral in (13.39) with E(W) given by (13 .38) can be performed most
easily by using Cauchy's theorem to change the integral over positive real W to
one over positive imaginary w, minus one over a quarter-circle at infinity. The
integral alon g the imaginary axis gives no contribution. Provided the f j in (13.38)

In the standard way this can be converted into a frequency integral,

( dE) = - ca Re f oo B ;(w)E1(w) dw (13.37)
dx b>a 0

With fields (13 .32) and (13.33) this gives the Fermi result (13.36).
The Fermi expression (13 .36) bears little resemblance to our earlier results

for energy loss. But under conditions where polarization effects are unimportant
it yields the same results as before. For example, for nonrelativistic particles
(f3 « 1) it is clear from (13.30) that A = wlv , independent of E(W). Th en in
(13.36) the modified Bessel functions are real. Only the imaginary part of 1/E(W)
contributes to the integral. If we neglect the polarization correction of Section
4.5 to the internal field at an atom, the dielectric constant can be written

where we have used the dipole moment expression (7.50) . Assuming that the
second term is small , the imaginary part of 1!E(w) can be readily calculated and
substituted into (13.36) . Then the integral over dw can be performed in the
narrow-resonance approximation. If the small-argument limits of the Bessel
functions are used , the nonrelativistic form of (13.9) emerges, with Be =

vla(w). If the departure of A from wlyv in (13.30) is neglected, (13.9) emerges
with Be = yvla (w).

The density effect evidently comes from the presence of complex arguments
in the modified Bessel functions , corresponding to taking into account E(W) in
(13 .30) . Since E(w) there is multiplied by f3 2, it is clear that the density effect can
be really important only at high energies. The detailed calculations for all ener­
gies with some explicit expression such as (13.38) for E(W) are quite complicated
and not particularly informative. We content ourselves with the extreme relativ­
istic limit (f3 = 1). Furthermore, since the important frequencies in the integral
over dw are optical frequencies and the radius a is of the order of atomic dimen­
sions , IAaI ~ (walc) « 1. Consequently we can approximate the Besselfunctions
by their small-argument limits (3.103) . Then in the relativistic limit the Fermi
expression (13.36) is

(13.35)

(13.34)

( dE) = 27TN f oo ()'E(b)b db
dx b >a a

()'E(b) = _1_ Re roo -iWE(W) IE(wW dw
27TN Jo

The energy loss per unit distance in collisions with impact parameter b ~ a

is evidently

If fields (13 .32) and (13.33) are inserted into (13.34) and (13.35) , we find, after
some calculation , the expression due to Fermi,

( dE ) = ~ (zet Re r iWA*aKl(A*a)Ko(Aa)(E(1w)
- f32) dw (13.36)

dx b >a 7T U 0

where A is given by (13.30). This result can be obtained more elegantly by cal­
culating the electromagnetic energy flow through a cylinder ?f. radius a around
the path of the incident particle. By conservation of energy this IS the energy lost
per unit time by the incident particle. Thus

(
dE) = ~ dE = _ _ c_ Joo 27TaB

3E 1
dx

dx b >« V dt 47TV - 00

The integral over dx at one instant of time is equivalent to an integral at one
point on the cylinder over all time. Using dx = u dt, we have

(
dE ) = _ ca Joo B

3(t)E
1(t) dt

dx b >a 2 - 00

In the limit E(W) ~ 1 it is easily seen that fields (13.32) and (13.33) reduce to the
results of Problem 13.3.

To find the energy transferred to the atom at impact parameter b we merely
write down the generalization of (13.27):

()'E(b) = 2e L f j Re Loo
iwxj(w) • E*(w) dw

]

where x(w) is the amplitude of the jth type of electron in the atom. Rather than
use (7.50) for xj(w) we express the sum of dipole moments in terms of the mo­
lecular polarizability and so the dielectric constant. Thus

1
-e L fjxj(w) = 47TN [E(W) - 1]E(w)

]

where N is the number of atoms per unit volume. Then the energy transfer can
be written

where the square root of (13.30) is chosen so that A lies in the fourth quadrant.
A similar calculation yields the other fields:

E2(w) ~ (~Y/2 EtW) Kl(Ab)} (13.33)

B3(w) = E(w)f3Eiw)



are assumed constant, the resul t of the integration over the quarter -circle can be
writt en in the simple form:

For photographic emulsions, the relevant energy loss is given by (13.12) and(13.13) with s = 10 keY . With the density correction applied, this becomes con ­
sta nt at high energies with the value,

(13.46)

(13.45)

(13.44)

* Z 2
e

2 ( . A*) [ 1 ] .( -caB 3E[) ~ -- - l - w 1 - - - - e - (A+ A )lIc' A f3 2E(W)

The r~al part of this expression, integra ted over freq uencies, gives the energy
deposited far fro m the path of the part icle. If A has a posit ive real part, as is
?enera~ly true, the exponential factor in (13.46) will cause the expression to van­
Ish rapidly at large distances. All the energy is deposited near the path . This is
not tru~ o~~ when A is purely imaginary . Then the exponential is unit y; the
expression ISI~dependent of a ;some of the energy escap es to infinity as radiation.From (~3.30) It can be seen tha t A can be purely imaginary if E(W) is re al (noabsorption) and f3 2E(W) > 1. Actually, mild absorption can be allowed for, but

The int egrand in (13.37) in this limit is

Fo r silver bromide, hw p = 48 eV . The n for singly charged particles (13.44) , di­
vided by the density, has the value of approxima tely 1.02 MeV · (crnvg). This
ene rgy loss is in good agreement with exp erimen t, and corresponds to an increase
above the mini mum value of less tha n 10% . Figure 13.2 shows total ene rgy loss
and loss fro m transfers of less than 10 keV for a typical substance . The dashed
curve is the Bethe curve for tot al energy loss without correction for density effect.

Th e dens~ty effect in ene rgy loss is intimately connected to the cohe rent resp onse
of a medi um to the passage of a relativistic particle that causes the emission of
Che renkov radiation . They are, in fact , the same phenomenon in different lim­
iting circumstances. The express ion (13.36), or bet ter , (13.37), represents the en­
ergy lost by the particle into region s a distance grea ter than b = a away fro m its
path: By varying a we can examine how the ene rgy is deposited throughout the
medi um. In (13.39) we have considered a to be ato mic dimensions and assume dIsaI « 1. Now we take the opposite limit. If Isa I » 1, the modified Bessel
functions can be ap proximated by their asympto tic forms. Then the fields (13.32)
and (13.33) become

13.4 Cherenkov Radiation

(13.43)

(13.42)

(13.41)

(13.40)

< 10 keY

Without
density /'

correction /' /'
/'

/'
/'

/'
/'

/'
/'/'

/'

lim t::.. (ddE) =
(3- [ x

We see tha t the density effect produces a simplification in that the asymptotic
energy loss no longer depends on the details of atomic struc ture through (w)
(13.11) , bu t only on the nu mber of electro ns per unit volume through wI" Two
substa nces having very different ato mic structures will produce the same energy
loss for ultr arelativistic part icles provided their densities are such that the density
of electrons is the same in each.

Since there are numerou s calculated curves of energy loss based on Beth e's
formula (13.14), it is ofte n convenient to tabulate the decrease in energy loss due
to the density effec t. This is just the difference between (13.40) and (13.42) :

0.1 10 102

(')' - 1)-
Figure 13.2 En ergy loss, including the density effect. Th e dashed cur ve is the tota l
energy loss witho ut density correction. Th e solid curves have the density effect
incorporated, the upper one bei ng the to ta l energy loss and the lower one the energy
loss due to individua l energy transfers of less tha n 10 keY.

(
dE) = (ze):w; In(1.123'YC

)
dx b >« C a(w )

The corres ponding relat ivist ic expression without the density effect is

where w I' is the electro nic plasma freque ncy

2 47TNZe2

W =
I' m


