(B) **Annihilation**

Produce 1\(\chi\), EM DECAY \(\rightarrow 3\chi\)

\[
\begin{array}{c}
\text{\(c\)} \\
\text{\(\gamma\)} \\
\text{\(c\)}
\end{array}
\]

But \(n\) (gluons) have same \(c\) as \(n\) (photons)

\[
\begin{array}{c}
\text{\(c\)} \\
\text{\(\gamma\)} \\
\text{\(c\)}
\end{array}
\]

Possible, but way lower than naive guess. "OZI" suppression "hard" gluons, energetic as smaller

When kinematically allowed,

\[
\begin{array}{c}
\text{\(c\)} \\
\text{\(\gamma\)} \\
\text{\(c\)}
\end{array}
\]

gluons set dominates.
Chapter 6 - Feynman Calculus

NR Quantum Mechanics... mainly "static" or "eigenstate" properties

R QFT: also rates of change

Types of change:

Decay of unstable particles...

\[i\hbar \frac{\partial \Psi_E}{\partial t} = \left(-\hbar^2 \frac{\partial^2}{\partial x^2} + V(x) \right) \Psi_E = E \Psi_E \]

\[\Psi_E(t) = \Psi_E(0) e^{\frac{E}{i\hbar} t} \]

but want \[|\Psi_E(t)|^2 = |\Psi_E(0)|^2 e^{\frac{-1}{2}\hbar \gamma t} \]

\[\frac{E}{i\hbar} \to \left(\frac{E}{i\hbar} - \frac{1}{2\hbar} \right) + \]

\[\to \frac{1}{i\hbar} \left(E - \frac{i\hbar}{2\hbar} \right) + \]

\[= \frac{1}{i\hbar} \left(E - \frac{\hbar}{2\hbar} \right) \]

Imaginary value of energy

\[\Rightarrow \text{Non Hermitian Decaying State} \]
Another way:

Lifetime in rest frame of particle

Any one particle will decay at a random time... but if you start with \(N(0) \rightarrow 1 \) define decay rate \(\Gamma = \frac{\sigma}{\hbar} \) through equation...

\[
\frac{dN}{N} = -\Gamma dt
\]

\[
\ln N = -\Gamma t + \text{constant}
\]

\[
N = e^{\text{constant} - \Gamma t}
\]

\[
N(0) = e^{\text{constant}} \cdot 1
\]

\[
N(t) = N(0) e^{-\Gamma t}
\]

key point: \(N(t) \) is # that survive.

probability of surviving \(P(t) = \frac{N(t)}{N(0)} = e^{-\Gamma t} \cdot A \left| \Psi(t) \right|^2 \)
One particle has a variety of ways to decay, usually:

\[\pi^+ \rightarrow \mu^+ \nu_\mu \]
\[\mu^+ \nu_\mu \gamma \]
\[e^+ \nu_e \gamma \]
\[e^+ \nu_e \pi^0 \]
\[e^+ \nu_e e^+ e^- \]

\[\frac{\text{BR}}{99.9877\%} \]
\[2 \cdot 10^{-4} \]
\[1.23 \cdot 10^{-4} \]
\[1.6 \cdot 10^{-7} \]
\[1.04 \cdot 10^{-8} \]
\[3 \cdot 10^{-9} \]

\[K^+ \rightarrow \mu^+ \nu_\mu \]
\[\pi^+ \pi^0 \]
\[\pi^+ \pi^- \pi^- \]
\[\pi^+ \pi^0 \pi^0 \]

\[(\text{lots more}) \]

Partial Rate

\[\pi^+ \rightarrow \text{Final State 1} \]
\[\pi^- \rightarrow \text{Final State 2} \]
\[\pi^0 \rightarrow \text{Final State 3} \]
\[\Pi = \Pi_1 + \Pi_2 + \ldots = \sum \Pi_i \]

Overall branching ratio

\[B_i = \frac{\Pi_i}{\Pi} \]

Particle intrinsic property

Feynman: Focus, in general, on one final state. Why?

K^+ decay: overall decay amplitude

\[\begin{array}{c}
\text{symbol for a transition amplitude} \\
A_1 \\
\end{array} \]

\[\frac{s}{u} \]

\[W^+ \]

\[\begin{array}{c}
\text{distinguishable} \\
A_2 \\
\end{array} \]

\[\frac{s}{u} \]

\[\frac{u}{d} \]