Physics 125 Fifth Problem Set

Harry Nelson TA: Ted Brookings

due Monday, May 13, 2001

This covers lecture material. It is in your interest to understand the first two problems before the midterm on Wed., May 8.

- 1. Particle #1 has mass m_1 and charge q; particle #2 has mass m_2 and charge -q. The two particles are in a classical bound state, where each follows a circular trajectory about their center of mass. The period of their orbit is T, and the distance between them is r.
 - (a) The *net* charge of the system is 0. Under what conditions on m_1 and m_2 will the magnetic moment of the system be 0?
 - (b) What is the general expression for the magnetic moment of the system? What is the value of the fudge-factor (the gyromagnetic ratio) g?
- 2. You send a beam of spin 1/2 atoms through three Stern-Gerlach measurements:
 - (a) In the first, $s_z = +\hbar/2$ is accepted, and $s_z = -\hbar/2$ is rejected.
 - (b) In the second, the direction of the \vec{B} field in the magnet is rotated about y by an angle α from the z direction toward the x direction; call the direction of the new axis \hat{n} , and the component of spin along it s_n . In this second measurement $s_n = +\hbar/2$ is accepted and $s_n = -\hbar/2$ is rejected.
 - (c) In the third, the direction of the \vec{B} field is again in the z direction, but now $s_z = -\hbar/2$ is accepted, and $s_z = +\hbar/2$ is rejected.

Find the intensity of the beam exiting the third measurement *relative* to the intensity of the beam exiting the first measurement. For what value of α is the relative intensity maximized?

3. This (lengthy) problem addresses the actual measurement of the z component of spin in a Stern-Gerlach magnet. The punch line will that the actual measurement of s_z causes decoherence of the spin components that are perpendicular to z, due to the diffraction of the atoms (which are waves too!) in the Stern-Gerlach magnet.

First, imagine the spreading of the wavefunction in the z direction in the absence of any magnetic field in the Stern-Gerlach magnet; the situation is depicted in Fig. 1(a). In the figure, a particle with wavefunction ψ enters with only the y-component of 3-momentum p_y non-zero, from the left into the bore of a Stern-Gerlach magnet. The full-width-at-half-max of the wavefunction in z is initially Δz . Consequently, the wavefunction spreads due to diffraction, with spreading angle $\Delta \phi = \lambda/\Delta z$.

(a) Express $\Delta \phi$ in terms of fundamental constants $2\pi\hbar$, and p_y , assuming that $|p_y| \gg |p_x|, |p_z|$.

Second, imagine turning the field on, as depicted in Fig. 1(b). The existence of a non-zero $|\partial B_z/\partial z|$ gives spin-up and spin-down *impulses* in the z direction equal to $\pm FT$, where F is the magnitude of force on the atoms, and T is the time spent traversing the length of the magnet.

(b) Evaluate the deflection angle ϕ in terms of g, e, m_e , \hbar , p_y , $\partial B_z/\partial z$, T, and any other quantity you think is relevant.

No Field in Stern Gerlach Magnet

Figure 1: For Problem 3. In the upper figure (a), the spreading or diffraction of the wavefunction ψ in z is depicted, in absence of any magnetic field in the Stern-Gerlach magnet. In the lower figure (b), the effect of the a non-zero field derivative $\partial B_z/\partial z$ is depicted; the impulse transferred to the s_z -up and the s_z -down components must cause deflections of the beams sufficient to cause an angle between the two components that exceeds the spreading angle from wave diffraction.

- (c) For the two beams to separate (eventually) so that they are distinguishable one must have $2\phi > \Delta\phi$. Use this relationship, but rearrange it, to place a lower bound on $\Delta\omega_p T$. Here $\Delta\omega_p$ is the difference in precession frequency between the parts of the wavefunction ψ at higher z and lower z, which are separated by Δz .
- (d) To visualize the concept of spin coherence, imagine that at each point in space where the wave function ψ is non-zero, there can be a distinct value of each of the three components of spin. Focus, for simplicity, on just s_x . Just before entering the Stern-Gerlach magnet with non-zero field, suppose that the value of the x component of spin s_x is non-zero, and constant across the whole spatial extent of ψ . What does the answer to part (c) imply about the spatial distribution of s_x when the wavefunction exits that Stern-Gerlach magnet? Can you describe why the measurement of s_z wipes out the mean value, averaged across the whole wavefunction, of s_x ?