exceedingly rare. Of course, the proven existence of even one magnet-
ically charged particle would have profound implications, but it would
not alter the fact that in matter as we know, it the only sources of the
magnetic field are electric currents. As far as we know,

divB =10 {everywhere) w i1

This takes us back 1o the hypothesis of Ampére, his idea that
magnetism in matter is to be accounted for by a multitude of tiny rings
of electric current distributed through the substance. We'll begin by
studying the magnetic field created by a single current loop at points
relatively far from the loop.

THE FIELD OF A CURRENT LOOP
11.3 A closed conducting loop, not necessarily circular, lies in the
Xy plane encircling the origin, as in Fig. 11.4a. A steady current 1,
measured in esu/sec, flows around the loop. We are interested in the
magnetic field this current creates—not near the loop, but at distant
points like Py in the figure. We shall assume that r,, the distance to
Py, is much larger than any dimension of the loop. To simplify the
diagram we have located P, in the yz plane; it will turn out that this
is no restriction. This is a good place to use the vector potential. We
shall compute first the vector potential A at the location P,, that is,
A(D, yy, ;). From this it will be obvious what the vector potential is
at any other point (x, y, z) far from the loop. Then by taking the curl
of A we shall get the magnetic field B.

For a current confined to a wire, we had, as Eq. 35 of Chapter

f: Cg& E\ij
=1 8 ARG
A(D, yy, 73) = = flmp = R (2)

At that time we were concerned only with the contribution of a small
segment of the circuit; now we have to integrate around the entire
lnop. Consider the variation in the denominator Fi2 a5 we go around
the loop. If Py is far away, the first-order variation in r,, depends only
on the coordinate v, of the segment d/;, and not on x3. This should be
clear from the side view in Fig. 11.4b. Thus, neglecting quantities pro-
portional to (x/r,)°, we may treat ry; and #{,, which lie on top of one
another in the side view, as equal. And in general, to first order in the
ratio (loop dimension/distance to P,), we have

Fia = ry = y;sin fl (3)

Look now at the two elements of the path df, and @f} shown in



FIGURE 11.4

{&) Caleulation of the vector polential A at a point far
from the current loop. (B) Side view, looking in along
the x axis, showing that

Fa = — ppsind iy 3

{c) Top view, to show that jmﬁdxz is the area of the
laop.

|

R

Fig. 11.4a. For these the dyy's are equal and opposite, and as we have
already pointed out, the r3’s are equal to first order. To this order
then, their contributions to the line integral will cancel, and this will
be true for the whole loop. Hence A at P will not have a y component.
Obviously it will not have a = component, for the current path itsell
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has nowhere a z component. The x component of the vector potential
comes from the dx part of the path imcﬁgll. Thus MES

.* dx; &C
: E
A0, yy, 2)) = ™~ e (4)

Without spoiling our first-order approximation, we can turn Eg. 3 into

N i
—|: Y sin i sin | (5)

1
Fiz Fy i

and using this for the integrand we have

A0, yy, 2)) = x—fn ""““m Xy x&.. (6)

In the integration r; and # are constants. Obviously j dxsaround the
loop vanishes. Now J ¥y dxy around the loop is just the area of the
loop, regardless of its shape (see Fig. 11.4c). So we get finally

I
sl ><: {area of loop) * 2= ‘M'

A(D, yy, zy) = g
Here is a simple but crucial point: Since the shape of the loop
hasn't mattered. our restriction on Py to the yz plane can’t make any
essential difference. Therefore we must have in Eq. 7 the general
result we seek, if only we srare it generally: The vector potential of a
current loop of any shape, at a distance r from the loop which is much
greater than the size of the loop, is a vector perpendicular to the plane
containing r and the normal to the plane of the loop, of magnitude

fa sin c
= y x el (%)
417

cre

where a stands for the area of the loop.

This vector potential is symmetrical around the axis of the loop,
which implies that the field B will be symmetrical also. The explana-
tion is that we are considering regions so lar from the loop that the
details of the shape of the loop have negligible influence. All loops with
the same current > area product produce the same far field. We eall
the product fa/c the magnetic dipole moment of the current loop, and
denote it by m. The magnetic dipole moment is evidently a vector, its
direction being that of the normal to the loop, or that of the vector a,
the directed area of the path surrounded by the loop

I
L8 X (9
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CHAPTER ELEVEN

FIGURE 11.5
By definition, ihe magnetic moment vecior is related o
the current by a righl-hand-screw rule as hare shown.

FIGURE 11.86
A magnetic dipole located af the origin. At every point

far from the loop, A is a vecior parallel to the xy plane,

tangent to a circle arownd the z axis.

As lor sign, let us agree that the direction of m and the sense of pos-
itive current flow in the loop are 1o be related by a right-hand-screw
rule, illustrated in Fig. 11.5. (The dipole moment of the loop in Fig.
11.4a points downward, according to this rule.) The vecior potential
for the field of a magnetic dipole m can now be written neatly with

veclors: cas MES

where F is a unit vector in the direction from the loop o the point for
which A is being computed. You can check that this agrees with our
convention about sign. MNote that the direction of A must always be
that of the current in the nearest part of the loop.

Figure 1.6 shows a magnetic dipole located at the origin, with
the dipole moment vector m pointed in the positive z direction. To
express the vector potential at an int (x, ¥, z), we observe that
= x4+ ' + 2%, and sin 0 = Vx* + y*/r. The magnitude A of the
vector potential at that point is

m sin # myxs + Me
3 = 1 lj‘ :,I I.}

A I 4T
Since A is tangent 1o a horizontal circle around the = axis, its com-
ponents are

[ =y —my L,
A, = A : = L 2B
V=)~ F
A e L Mo
A =Adl———s|=—7 ¥ 12
duia tv oy e R
A, =0

Let's evaluate B for a point in the xz plane, by finding the com-
ponents of curl A and then (not before!) setting p = 0,

dAd.  dA i nx Imxz
B, =(VXA),=—— = — —— - — = M
e =y T o (X +y+ F 4T
dAd, dA. o —my Imy:z
H,- =(V A, = _—— = — = = =5 ™ . J.r_"'_’;
y = b dz dx  dz(x*+yt + H¥? r 4
dd, dA
-E:-I:I?I}':-""]::_L__JI
dx dy
e —2x*+ v+ P =247 3 m3z* —r) Jui
[.'I.'I _|,_ _,]"l + z]}.‘u’z [xi + J,I + :!‘:Ii_.": r." ‘HI'

(13)
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In the xz plane, y = 0, sin # = x/r, and cos # = z/r. The ficld
components at any point in that [.'I:I!HEE- are thus gweanj:

Im sin # cos 0
Ll LA LA R ]
B, 2 @
B, =0 (14)
Bz=m[3m;ﬂ—1] T,

Now turn back to Section 10.3, where in Eq. 1014 we expressed
the components in the xz plane of the field E of an electric dipole p,
which was situated exactly like our magnetic dipole m. The expres-
sions are identical. We have thus found that the magnetic field of a
small current loop has at remote points the same form as the electric
field of two separated charges. We already know what that field, the
electric dipole field, looks like. Figure 11.7 is an attempt to suggest
the three-dimensional form of the magnetic ficld B arising from our
current loop with dipole moment m. As in the case of the clectric
dipole, the field is deseribed somewhat more simply in spherical polar

coordinates: . o . ﬁ
-5l B,=Tsing  B,=0 (15

£, = cos . - i

The magnetic field close to a current loop is entirely different
from the electric field close to a pair of separated positive and negative
charges, as the comparison in Fig. 11.8 shows. Notice that between
the charges the electric field points down, while inside the current ring
the magnetic field points up, although the far fields are alike. This

reflects the fact that our magnetic field satisfies V - B = 0 every-
where, even inside the sowrce. The magnetic field lines don’t end. By

FIGURE 11.7
Some magnetic field lings in the field of a magnetic
dipole, that is, a small loop of current.



FIGURE 11.8

(4} The electric fied of a pair of equal and opposile
charges, Far away il becomes the field of an electric
dipole. (k) The magnetic field of a current ring. Far
away il becomes the field of a magnetc dipole,

near and far we mean, of course, relative to the size of the current
loop or the separation of the charges. Il we imagine the current ring
shrinking in size, the current meanwhile increasing so that the dipole
moment m = fa/¢ remains constant, we approach the infinitesimal
magnetic dipole, the counterpart of the infinitesimal electric dipole
described in Chapter 10.




