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An interactive computer program is described that simulates Stern—Gerlach measurements on
spin-1/2 and spin-1 particles. The user can design and run experiments involving successive spin
measurements, illustrating incompatible observables, interference, and time evolution. The
program can be used by students at a variety of levels, from nonscience majors in a general
interest course to physics majors in an upper-level quantum mechanics course. Suggested
homework exercises are given using the program at various levels.

I. MOTIVATION AND OVERVIEW

Quantum mechanics is central to 20th century physics,
yet instructors disagree strongly over how, and when, to
teach this subject to students. A course in quantum me-
chanics for beginning students faces several obstacles: The
full theory is horribly abstract and mathematical, while
simplified presentations tend to be vague and misleading.
The same hurdles are present, though perhaps less severe,
at the start of an upper-level quantum mechanics course
for physics majors.

Much of the math can be avoided, at least for a while, by
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starting with finite-dimensional spin systems.! One disad-
vantage of this approach, however, is that it makes the
subject even more abstract, as the measurable quantities
are not as familiar as position and momentum. In princi-
ple, this problem could be solved by assigning laboratory
exercises with Stern-Gerlach devices, but in practice such
experiments are difficult and expensive to carry out.

This article describes a computer program, called Spins,
that is designed to address these issues. A Stern—Gerlach
laboratory is simulated on the computer screen (see Fig.
1), allowing the student to quickly design and run a num-
ber of experiments involving spin systems. As the experi-
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Fig. 1. The simplest experimental arrangement, with a single Stern—
1 Gerlach device and two counters. {(This experiment is ready to run when
% the program starts.)

i ment runs, simulated particles are sent through the devices
1 one at a time, while the student watches the numbers on
| the counters increase. Multiple Stern—-Gerlach devices, ori-
- ented in various directions, can be linked together in any
4 order, and can be used to study spin-1 as well as spin-1/2
| particles (Fig. 2). Interference can be studied by combin-
1 ing the beams emerging from one device and sending them
tinto a second (Fig. 3). Time evolution can also be ob-
4 served, using a device that simulates the effect of a uniform
4 magnetic field (Fig. 4).

i The pedagogical values of the program are numerous.
4 Most obviously, it gives students a concrete visual image to
{go with each of the concepts just mentioned. In addition,
dthe program makes the statistical nature of quantum-
4mechanical predictions obvious. More generally, through
g designing and running their own experiments, students see
dthe theory at work in a somewhat realistic setting, and
dllearn to separate the arbitrary mathematical conventions
Afrom the unambiguous physical predictions.

i Students at almost any level can use the program. Any-
Jone with sufficient curiosity can play with it and try to
stinvent a theory to explain the strange behavior of the par-
dticles. Students with some knowledge of geometry can ar-
rive at a complete understanding of a restricted set of ex-
periments with spin-1/2 particles. Introductory physics
students can learn enough about complex numbers to un-
derstand spin-1/2 quantum mechanics in general, while
upperclass physics majors can explore the full complexities
of a nontrivial three-dimensional system.

Most of the rest of this article consists of guidelines and
exercises written for users of the program. Since the pro-
gram can be used at so many different levels, we are im-
mediately faced with the question of who the users are.
Sections I1 and III are written for students with no prior
fknowledge of physics and no mathematical background

ig. 2. A much more complicated experiment, involving successive
Stern—~Gerlach devices and spin-1 particles.

Fig. 3. An interference experiment with spin-1/2 particles.

beyond plane geometry; Sec. IT contains basic instructions,
while Sec. III contains theoretical explanations and sug-
gested homework exercises at this level. Section IV con-
tains a brief discussion of uses for the program at more
advanced levels, followed by an extensive set of advanced
exercises. In Sec. V we add a few general comments for
instructors, and briefly discuss the current implementation
of Spins on the Macintosh.

I1. BASIC INSTRUCTIONS

A. Getting started

Welcome to Spins, a quantum physics laboratory at your
fingertips! When you start the program you see a diagram
of a simple physics experiment (see Fig. 1). At theleftis a
device (we'll call it a gun) that emits particles (call them
atoms), one at a time. The atoms follow the line to the
right, then enter another device, an X-gnalyzer, which de-
flects them either up or down. They leave the X-analyzer
through one of two possible holes on its right side, then
follow the paths shown into two counters. Physicists say
that this experiment “measures™ a property of the atoms
called “spin in the x direction.” Atoms coming out of the
upper hole of the X-analyzer are said to have “spin up in
the x direction,” while those coming out of the lower hole
are said to have “spin down in the x direction.” For this
particular type of atom, only these two outcomes of the
measurement are possible.

To start the experiment, choose ‘Go’ from the ‘Control’
menu.? Let it run for a while, then choose ‘Stop’ from the
same menu. You can start and stop as many times as you
like. You can reset the counters and start over by choosing
‘Reset’. If you want to run the experiment for a long time
but don’t want to wait so long, choose ‘Do 1000’ or ‘Do
10000’, and the computer will send that many atoms
through the apparatus very quickly, updating the counters
when it is done.

You should see about half of the atoms ending up in
each counter. Repeat the experiment several times, and
convince yourself that although the numbers on the two
counters are hardly ever exactly equal, the deviations from
equality are in some sense “small” and “random.” A phys-
icist would say that these atoms are equally probable to be
found with their spins up or down in the x direction.

Fig. 4. In this experiment, spin-1/2 particles with spin ilp in the x direc-
tion are placed in a uniform magnetic field, oriented in the z direction, for
5 time units. Then the x components of their spins are measured.



you can create different (and much more interesting) ex-
periments in several ways. First, put the cursor over the
“X” on the X-analyzer and click. The “X” will change to
a “Y,” and you have magically changed the X-analyzer
into a new type of device, a Y-analyzer. Clicking again
changes it into a Z-analyzer, then a G-analyzer, and finally
back into an X-analyzer. Run the experiment again with
the Y-analyzer (and the others if you wish), and see what
happens.

To make a more complicated experiment you can send
the atoms through two analyzers in succession. You can
create more analyzers with the ‘New Analyzer’ command
under the “Design’ menu. You can create more counters in
a similar way. You can then move them around the screen
with the mouse. (To move an analyzer, place the cursor in
the gray region surrounding its letter; the cursor will take
the form of crossed arrows. Press the mouse button, and
drag the analyzer to its new location.) To draw lines con-
necting the components together, first press in the output
end of one (the cursor will take the form of an arrow
pointing to the right), then drag to the other and release. If
you decide that you no longer need a component, you can
select it (by clicking on it) and choose ‘Delete’ from the
‘Design’ menu.

Try designing some experiments of your own now, to get
a feel for how to manipulate the componenis, and to learn
more about how these atoms behave. Use only X- and
Y-analyzers for now, to keep things simple. What happens
when you run the atoms through two successive analyzers
of the same type? What if the types are different? Keep
looking for patterns until you think you can predict the
outcome of any experiment built out of these two types of
analyzers. Try to formulate a set of rules that would tell
someone else what the outcome of any such experiment
would be.

You may be wondering what these “analyzers” actually
are, and how they would work in a real experiment. The
details don’t matter, but you should know that a
Y-analyzer is just an X-analyzer turned on its side. The
O-analyzer is also the same apparatus, but you can turn it
to any angle with the ‘Change Theta’ command on the
‘Design’ menu; an X-analyzer is the same as a 8-analyzer
turned to zero degrees, while a Y-analyzer is the same as a
O-analyzer turned to 90 degrees. Try running some exper-
iments to confirm this. Then try some other angles, and see
if you can find a pattern.

The only other thing you need to know about the ana-
lyzers is that they contain no moving parts (each is actu-
ally no more than a strangely shaped magnet surrounding
the path of the atoms); each analyzer always looks the
same no matter which of its openings the atoms come out
of. Similarly, the atoms themselves behave identically un-
der all circumstances except when they are passed through
one of the analyzers. There is no way to tell just by “look-
ing” at an atom whether it will go up or down. Of course
this does not necessarily mean that the atoms emitted from
the gun are all identical; that is for you to decide, on the
basis of your experiments.

B. Interference

Here’s a good experiment to try next {see Fig. 3). Con-
nect the gun to an X-analyzer. Connect the up-output of
this X-analyzer to a Y-analyzer. Then connect both out-
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Fig. 5. We represent the state of an atom by an arrow drawn on a piece,
of paper. The length of the arrow is one “unit,” while the direction of the
arrow depends on the state in question. Arrows pointing in oppom&
directions represent the same state.

puts of this ¥-analyzer to a second X-analyzer. Connect all
remaining outputs to counters. Run the experiment in this:
configuration, then try disconnecting one of the two paths,
from the Y-analyzer to the final X-analyzer. First discon-
nect one, then the other, then try it again with them both
connected. Can you explain the results? If the rules you:
formulated earlier do not give the correct prediction here,
try to modify them to cover this experiment as well as the
others. The phenomenon exhibited here is called *“interfer-'
ence” by physunsts, and is analogous to the interference of
light passing through a double slit.

Since the atoms pass thmugh the apparatus one at a
time, you may wonder if it is possible to watch each atom
as it goes through, to see which of the two paths it takes.,
You can do this, but not without modifying the analyzers.:
Select “Watch® from the ‘Control’ menu. This attaches a
light to each output opening of each analyzer; the Ilght
bounces off the atoms as they pass through the opening, ;
causing a brief flash. Now repeat the experiment, and see’
what happens.

C. Additicnal commands

The program has several additional features, which alwé
low you to build still more complicated experiments. Herc
is a brief summary of the menu commands.

The ‘Initialize’ menu determines how the gun works
Although the atoms coming out of it always look the same,
they will behave differently if you choose a different “initial
state.” You can choose three different initial states, but it’s
up to you to determine how they differ. You can also;
choose ‘Random’, which randomizes the initial states. |

The ‘Design’ menu lets you creaie another type of ex-;
perimental device: a “magnet” (see Fig. 4). Magnets come .
in four types, X, ¥, Z, and 6, just like analyzers. Each
magnet has just one input and one output, so you can:
direct atoms through it and then use an analyzer to deter- .

down arrow
A
| | -
origin up arrow

Fig. 6. An analyzer corresponds to a pair of unit-length arrows, perpen-
dicular to each other. (The directions of the arrows depend on which |
analyzer they represent.) 7
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Fig. 7. To determine the amplitudes for the atom to go up and down, use
this geometrical construction.

mine how they have been affected. The two-digit number
on the magnet determines how much time the atoms spend
inside (in very small units so that even 99 units of time is
not long enough to noticeably slow down the experiment).
Try setting up the experiment shown in Fig. 4, with a
Z-magnet between two X-analyzers. Increment the time
(by clicking on the number) very gradually, and system-
{ atically investigate the magnet’s effect on the behavior of
the atoms as they pass through the second analyzer. Cau-
tion: Experiments with magnets can be quite complicated.
To understand the effect of magnets other than type Z
requires a substantial amount of mathematics.

1 You can experiment with a completely different type of
atoms by choosing *3-State Spin’ from the ‘Design’ menu.
When these atoms are sent through an analyzer they are
found to bend in one of three different directions, 50 the
analyzers are now provided with three output openings
instead of just two. The numerical results of the experi-
ments get much more interesting now, but with a bit of
{4 work you should still be able to find some patterns in the
results (at least for X, ¥, and Z). Using magnets and
f-analyzers in conjunction with the 3-state atoms is very
interesting, but not recommended for beginners.

[II. ELEMENTARY EXPLANATIONS AND
| EXERCISES

| A. The rules of quantum mechanics

Please don’t read on until you have performed several
| experiments and formulated your own set of rules for pre-
| dicting how the atoms behave. You may be able to come up
- with a better set of rules than the ones given here.

Now that you've tried to understand the results of sev-
eral experiments, you may wonder how physicists under-
stand them. The short answer is, we don’t. The best we’ve
. been able to come up with is a fairly concise set of “rules”
for calculating the (average) outcome of such an experi-
ment. You can decide whether these rules shed any light on
what is really going on.

The rules stated here are sufficiently general to cover
experiments involving X, ¥, and @-analyzers, as well as
 Z-magnets, for the 2-state spin system. The generalization
to other experiments requires more mathematics, but the
 concepts are essentially the same.’

Rule I: Physicists represent the “state” of an atom at
any given time by an arrow? drawn on a piece of paper (see
Fig. 5). All allowable arrows have the same length (which
| we’ll take to be one “unit™), but they can point in different

down arrow

up arrow

Fig. 8. Here we have chosen the directions of the up and down arrows of
the X-analyzer arbitrarily, subject to the constraint that they be perpen-
dicular to each other. The circle is for reference: all arrows must have
their tails at the center and their tips on this circle.

directions. Arrows that point in opposite directions (180°
apart) represent the same physical state. Thus there are
infinitely many possible states, corresponding to the infi-
nitely many directions (from 0° to 180°) in which the ar-
Tow can point.

Rule 2: Similarly, we represent each analyzer by a pair of
perpendicular, uvnit-length arrows, whose tails coincide
(see Fig. 6). One of these arrows corresponds to the result
“up” for that analyzer, while the other arrow corresponds
to the result “down.” We will call the arrows the up arrow
and the down arrow. (Note that these arrows need not, and
usually do not, point up or down on the sheet of paper. In
general, the direction of an arrow on the paper has no
direct relation to the physical orientation of the analyzer.)
The point where the tails of the up and down arrows meet
is called the origin.

Rule 3: When an atom passes through an analyzer, it has
a certain probability of going up, and a certain probability
of going down. We usually can’t predict which it will do;
we can only calculate the probabilities. To compute the
probability of going up, you first draw the arrow corre-
sponding to the atom’s current state, and the two arrows
corresponding to the analyzer, on a single piece of paper
with all their tails together at the origin (see Fig. 7). Sup-
pose first that the angle between the state arrow and the up
arrow is less than 90°. You then draw a new line from the
tip of the state arrow, which meets the analyzer’s up arrow
at a right angle. Measure the distance from the origin to
this perpendicular intersection of the new line and the up
arrow. This distance is called the amplitude for the atom to
g0 up. The probability for the atom to go up is the square
of the amplitude. If the angle between the state arrow and

Fig. 9. An experiment to test Rule 4, ready to run. {The outcome will be
that all the atoms end up in the top counter.)



the up arrow is greater than 90°, you must first rotate the
state arrow by 180°, then follow the same procedure; in this
case the amplitude is the negative of the distance from the
origin to the perpendicular line (but the probability, being
the square of the amplitude, is still positive). The proba-
bility to go down is computed in a similar way, using the
analyzer’s down arrow. Since the state arrow has unit
length, the Pythagorean theorem guarantees that the two
probabilities add up to 1.

Rule 4: When the atom leaves the analyzer, its arrow
changes abruptly. If it went up, its new arrow is the same
as the analyzer’s up arrow; if it went down, its new arrow
is the same as the analyzer’s down arrow.

Rule 5: In experiments where beams are recombined (as
in Fig. 3), we must use more care in converting amplitudes
to probabilities. Consider each path that the atom could
take in order to produce a certain final outcome, and com-
pute the amplitude for each path by multiplying together
the amplitudes for each step along the path. Then compute
a total amplitude for the final outcome by adding together
the amplitudes for all paths. The probability of the out-
come is the square of this total amplitude. (When there is
only one possible path, this method gives the same result as
computing the probability separately for each step, as de-
scribed in Rule 3.)

Rule 6: A Z-magnet causes the atom’s arrow to rotate in
the plane of the paper at a uniform speed, as long as the
atom is inside the magnet.

You may have noticed that these rules are extremely
abstract. They give only a general framework for describ-
ing quantum mechanical experiments, without any specific
prescriptions for which arrows we should associate with
which states. That is because the specifics are, to a certain
degree, arbitrary. The rules assert that we can come up
with some set of arrows to associate with the various states
and analyzers, and that once we do so, the outcomes of all
experiments will be as predicted. The following exercises
should clarify where the arbitrariness ends and the predic-
tions begin.

B. Exercises with the 2-state spin system

Now that you know the rules, you should be able to
work the following exercises. Once you’ve done so, you will
understand this system as well as any physicist.

Figure 8 shows the up and down arrows of the
X-analyzer. The directions of these arrows have been cho-
sen arbitrarily, subject to the constraint that they are per-
pendicular to each other. Also shown in the figure is a
circle whose radius is 1 unit;’ all other arrows, whatever
they represent, must lie with their tails at the origin and
their tips somewhere on this circle.

Set up the simple experiment shown in Fig. 1, and
choose ‘Unknown #3° from the ‘Initialize’ menu. By run-
ping this experiment several times, determine the probabil-
ities for the atoms to go up and down. Take the square root
of each probability to determine the amplitude for each
result, remembering that either amplitude could be positive
or negative. Knowing these amplitudes, you can almost
determine the state arrow of the atoms: you should be able
to narrow it down to four possibilities. Sketch the four
arrows lightly on the figure.

Add a second X-analyzer between the gun and the first
X-analyzer (see Fig. 9), and run the experiment. Repeat
the experiment with the down output (rather than the up
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output) of the first analyzer connected to the input of the @
second. Also repeat the experiment with both X-analyzers ¢
changed to Y-analyzers. Is the behavior of this system con-
sistent with Rule 4? Explain your answer carefully.
Repeat the above experiment, but this time with one:
X-analyzer and one Y-analyzer (in various combinations). ;
Using the results of these runs, find the directions of the up |
and down arrows of the ¥-analyzer. Again, you should find ;
several possible directions for the arrows. Choose one set of
arrows arbitrarily, and draw them on the figure.
Now use an experiment with a single Y-analyzer to nar-
row down the choices for the initial arrow. There should be |
two candidate arrows lefi, but they should point in oppo- {
site directions. Since Rule 1 says that arrows pointing in :
opposite directions represent the same physical state, either
of these arrows is correct. ;
Set up the interference experiment as described in Sec
I1. Is this experiment consistent with Rule 5?
Set up an experiment with a Z-magnet between two _
X-analyzers. Rule 6 says that the magnet will make the |
atom’s state arrow rotate at a fixed rate. By what angle |
does it rotate for each unit of time spent in the magnet? ;
What time setting corresponds to a full 360° revolution of |
the arrow? Try to design an experiment that will tell youin §
which direction the arrow rotates.

IV. GUIDELINES FOR MORE ADVANCED USES
A. Introductory physics courses

The student instructions in Secs. I and III can easily be §
adapted for use in an introductory physics course, where
students have more mathematical knowledge and vocabu-
lary. The “arrows” can become “vectors™, and the geomet- ¢
rical construction of Rule 3 can become a dot product. £
This makes it possible to give purely algebraic rules, al- |
though the geometric interpretation can still be helpful to
students. Anyone familiar with sines and cosines will have
little difficulty determining the state vectors associated ¢
with the G-analyzer. To include rules for the Z-analyzer ¢
one must introduce complex numbers,® for which the geo- §
metric interpretation fails. P

The time-evolution postulate (Rule 6) could be replaced
by the full time-dependent Schrédinger equation, although
this requires some mathematical sophistication on the part
of the students. An alternative approach in an introductory
course is to give the following algorithm for determining
the time evolution of a given initial state: Write the initial
state vector as a linear superposition of the two orthogonal
vectors associated with the direction of the magnet, then
multiply each term by a factor exp(—iwt), where @ equals
some constant for the “up” piece, and minus the same
constant for the “down” piece. After determining the cor- §
rect constant, students can predict the outcome of any §
measnrement performed on atoms that have passed |
through a magnet.

B. Upper-level physics courses

In an upper-level quantum mechanics course for physics
majors, students are generally introduced to all the math-
ematical machinery of Hermitian matrices, eigenvalues
and eigenvectors, and the time-dependent Schrodinger
equation. For the purpose of using this program, they
should also be taught some version of the postulates of
quantum mechanics, analogous to those presented in the
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previous section. This alows them to deal with the 3-state
gystem in all its complexity. The following exercises illus-
_ trate some of the possibilitics. Many of them are analogous

some are considerably more intricate.

; Exercises for advanced students

We will ‘adopt the convention that all vectors are ex-
pressed in terms of the “eigenbasis” of the X-analyzer. This
means that the eigenvectors of the X-matrix are (1,0,0),
(0,1,0), and (0,0,1). (Note that these vectors are all nor-
malized and mutually orthogonal.) We will take the eigen-
values of the matrix to be 1, 0, and —1, corresponding to
up, 0, and down, respectively. Associating the eigenvectors
with the eigenvalues is also a matter of convention; we will
take the eigenvectors to correspond to the eigenvalues in
4 the order in which they are listed above. Given these con-
1 ventions, what is the X-matrix?

Choose *3-State Spin’ from the ‘Design’ menn, and ‘Un-
1 known #£ 1’ from the “Initialize’ menu. Use the X' -analyzer
{ to find the state vector of this initial state. You will only be
1 able to determine the components of the vector to within
4 complex factors of unit modulus (why?). Since vectors
4 that differ by an overall constant factor represent the same
| physical state, we can choose the convention that the first
4 component be real and positive. There are still unknown
4 factors in the other two components, however. Assume for
1 now that the components of this vector are all real. Then
the only ambiguities are in the signs of the second and
4 third components.

& Hints: All components of vectors and matrices used here
can be written as simple fractions of small integers (like
1/2), or as square roots of such simple fractions. It may
help you to know that if you perform an experiment N
times, and the probability of a certain result is P, the num-
ber of times that you actually obtain that result can differ
from the expected number Np by as much as about
2{Np(1=p). (More precisely, the standard deviation of
he distribution is yNp(1—p); the probability of being off
by more than two standard deviations is very small, about
3%.)

Is the behavior of this system consistent with the “col-
apse” postulate? Perform successive measurements with
both X and Y analyzers to justify your answer.

Find the eigenvalues and eigenvectors of the ¥-matrix.
Once again you will not be able to determine them
uniquely. Use the convention that all components be real,
and that the first component of each, as well as the remain-
ng components of the eigenvector corresponding to the
igenvalue + I, be positive.

These conventions for the ¥-matrix are sufficient to de-
crmine the unknown signs in the components of the initial
tate. What are they?

Prove the identity ¥Y—=MXM", where X and ¥ are the
matrices corresponding to the X and Y analyzers, M is a
matrix whose columns are the eigenvectors of ¥, and M1 is
ihe conjugate transpose of M. This identity gives you an
asy way to find the Y-matrix (it can also be found by
rute force, by solving a system of linear equations). What
is the Y-matrix?

The f-analyzer is just an X-analyzer rotated by an angle
. (A Y-analyzer is a 8-analyzer with 6= 90°.) This means
hat the quantity measured by 6 can be expressed as

to the elemeniary exercises of the previous section, but

X cos 0+ Y sin 0. The postulates say that the @-matrix is
given by this same function of the X and Y matrices. What
1s the O-matrix? What are its eigenvalues and eigenvectors?
Connect one of the outputs of an X-analyzer to the input of
a B-analyzer, and calculate the probabilities for obtaining
the three possible outcomes of the #-measurement, as a
function of 6. Verify your predictions by running the ex-
periment for several different values of 6.

A magnet causes the state vector fo evolve according to
the time-dependent Schrodinger equation. The solution
of this equation can be written formally as
¥(2) =exp(—iHt)$(0). Normally this expression is not
very useful, since it is usually impossible to evaluate the
exponential of the matrix. But since we are working with
very simple 3X3 matrices, we can use this expression di-
rectly. The matrix exp(—iHt) is called the propagator, and
denoted by U(t). We will try to determine U(z) {and
hence H) for the Z-magnet in the 3-state system.

Since we are using the eigenvectors of the X-matrix as
our basis, the matrix elements of U(z) are found most
easily by sending atoms that are in X-eigenstates into the
magnet, then measuring X again when they come out. So
connect the gun to an X-analyzer, one output of this ana-
lyzer to a Z-magnet, the output of the magnet to a second
X-analyzer, and all three outputs of this analyzer to
counters. Choose any initial state that gives you nonzero
counts. Increment the time on the magnet slowly, and
record the number of atoms in each counter after a rea-
sonably long run (1000 atoms or so) for each value of the
time. Graph the relative probability for ending up in each
counter as a function of time. Repeat the whole process
using each of the three outputs of the first X- -analyzer.

You should now have nine graphs. For what value of the
time does the atom have the same state vector coming out
of the magnet that it had going in? [That is, for what value
of # does U(t)==1?] Each graph represents the square of
one element of the 33 matrix U(#) (why?). Try to guess
the functional form of the curve for each of your graphs.
[Hints: It is easier to guess the fanctional form of the
square root of the probability. You will get simple func-
tions involving sines and cosines; for example, one of the
matrix elements is (1+cos 6)/2.] Remember that for any
given experiment, the sum of the three probabilities you
measured must be 1. Do the functions yon guessed satisfy
this constraint? Given the nine probabilities, the elements
of the matrix U(#) are still unknown up to factors of unit
modulus. To make your job easier, we have chosen the
matrix elements of H to be pure imaginary, and hence
U(t)=exp(—iHr) is pure real. Given this information,
you now know the matrix elements of ¥/(r) except for
possible factors of —1.

You can determine the nine unknown signs in U(¢) with
very little difficulty. First note that U/(7==0) must equal 1;
this determines three of the nine signs. Five of the remain-
ing six can be found by changing one or the other (you will
have to do both, one at a time) of the X -analyzers into a
Y-analyzer. Find a time setting on the magnet that changes
a pure X eigenstate into a pure ¥ eigenstate, or vice versa.
The conventions used above for the ¥ eigenstates will de-
termine the unknown signs. The final unknown sign can be
found by expanding U(t) as a power series in ¢ and recog-
nizing the linear term as — iHt. The fact that H is Hermit-
ian gives one more relation among the signs. Write down
your final expression for U(¢).



The expression for H you just obtained still contains an
unknown overall constant, which you can make anything
you want by redefining the standard wnit of time. (In other
words, making the magnet twice as strong has the same
effect as leaving the atoms inside twice as long.) Use the
following convention: Let ¢ be the time variable that ap-
pears in the Schridinger equation, let # be the number
displayed on the magnet, and let N be the number on the
magnet that corresponds to one full cycle [so that
U(n=N}=1]. Then define t=2n(n/N). Given these con-
veniions, what is H? As a check, you should find that the
eigenvalues of H are 1, 0, and — 1. Finally, try to verify
explicitly that U(f)=exp(—iHt). [Hint: One way to do
this is first to pretend that H is the diagonal matrix
diag(1,0,—1), and find an expression for exp{—iHt) as a
linear combination of 1, H, and H> Then note that there
exists a matrix M such that MTM=1 and M'EM
=diag(1,0,—1), and use this fact to prove that your ex-
pression is correct even though H is not diagonal.]

It so happens that H is identical to the matrix of the
Z-analyzer. Find its eigenvectors, and verify this by per-
forming some experiments.

Referring back to your data for X-analyzers before and
after the magnet, for the case where the initial X-analyzer
gave the result ‘up’, make a graph of the expectation value
(i.e., weighted average) of the final X-measurement as a
function of time spent in the magnet. Verify that the ex-
pectation value is ' X1), where X is the X-matrix and ¢ is
the state vector of the atom as it leaves the magnet. Change
the final X-analyzer to a Y-analyzer, and find an expression
for the expectation value of Y as a function of time for the
same initial state (X up). Verify Ehrenfest’s theorem,
which says that for any observable A, d{4)/dt= —i{AH
— HA), where {4) denotes the expectation value of the
observable A (and similarly for the observable AH — HA).
Note that if we consider only expectation values, an atom
behaves like a classical magnet, initially pointing in the
X-direction, spinning about its axis, and precessing in the
presence of a magnoetic field that points in the Z-direction.
In other words, the expectation values of quantum observ-
ables behave as classical observables.

V. ADDITIONAL COMMENTS

The sets of example exercises given in Secs. III B and
IV C are both too short and too long. They are too short in
the sense that they could hardly stand alone in this form—
they would have to be amplified and adapted for the spe-
cific needs of any particular course. But they are also too
long, since working either set of exercises could take stu-
dents as long as two weeks. The minimum time investment
required before the program’s educational benefits become
significant is probably one week. At least in a course for
beginning students, this is a lot of time to spend on the
quantum mechanics of spin systems, a subject that has
little practical “use.”

Although this program simulates a quasirealistic set of
experiments, it is certainly not intended as a substitute for
real-life laboratory experience. In particular, some limited
experiments of this type can be performed with polarized
light and calcite crystals. We hope that the real experi-
ments and the simulated ones can complement each other.

The current incarnation of Spins is written in Pascal and
runs only on the Macintosh personal computer. This pro-
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gram is currently available directly from Daniel Schroeder.
Please send inquiries to the address given in footnote (a).

The source code for the Macintosh version of Spins is
guite long (nearly 3000 lines), for two reasons. First, the
Pascal language is not ideally suited to working with the
complex numbers, vectors, and matrices of quantum the-
ory, so the implementation of the basic quantum mechan-
ical rules is not very elegant. Second, a great deal of code is
needed to implement the graphical user interface. Unfor-
tunately, none of the user interface routines are portable to
other machines. With sufficient time, however, one could
create an equivalent program for any machine with a
graphical user interface. The authors would be happy to
assist anyone who is seriously interested in undertaking
such a project.

On systems with a traditional “command-line” user in-
terface, one can easily implement a more limited version of
the program. The experiment would proceed as a dialog
such as the following:

User: prepare 1000

Computer: 1000 atoms are being fired from the gun,
U: measure x

C: Results of X measurement: 476 up, 524 down.
U: select up

C: You have selected 476 atoms with X up.

U: measure y

C: Results of Y measurement: 261 up, 215 down.
etc.

Here the program merely keeps track of the current state
vector of the system (an array of two or three complex
numbers), dots this vector into the appropriate eigenvec-§
tors to determine the probabilities of all possible outcomes, §
and then generates a random number between 0 and 1 for§
each atom to determine the outcome of the measurement. |
When the user selects a subset of the atoms for a further
measurement, the current state vector is set equal to theg
appropriate eigenvector, according to Rule 4. An imple-§
mentation of this sort obviously lacks visual images, andj
would make interference experiments difficult or imposs
ble, but most of the exercises described in the previous|
sections could still be carried out, with similar benefits to}
the student. The earliest version of the Spins program wa
of this type. This version has been used in a sophomor
level class, and students found that even this crude versio
helped make the postulates of quantum mechanics see
more concrete.
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’These instructions are written for the Macintosh implementation of the
program, and assume that the user is familiar with the radiments of the]
Macintosh user interface: using the mouse to select menu items and tof
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i “click,” “‘press,” “drag,” and “release.” A. brief explanation of these
 lermas should be included in the instructions for students.
I*The rules stated here are of course much 100 ferse to be absorbed in a
single reading. We assume that this material would be presented and
i discussed in class.
'For students with a limited mathematical background, this geometrical
{ representation using “arrows” is much more accessible than the usual
" algebraic representation. For the benefit of instructors, however, we
| point out that a unit-length arrow is completely equivalent to a nor-
. malized two-component spinor. In the exercises in Sec. III B we will
: nse the spinors (1,0) and (0,1) to represent spin up and down in the x
- direction, and (1,1)/vZ and (1,—1)/vZ (in either order) to represent
- spin up and down in the y direction. The eigenstates of the Z-analyzer

would then be represented by complex spinors, for which the geomet-
rical picture breaks down. This is why we avoid Z-analyzers at this
level.

*To save space, the figure is reproduced here at a very small scale. In
practice it is probably best to give the student a worksheet on which the
figure occupies most of a page; a scale of 10 cm for the unit-length
arrows works nicely, The instructions can then be made more concrete
by replacing units with centimeters.

%In these guidelines we have chosen to use a basis where the spin-X
operator is diagonal, rather than Z as is usually done. For beginning
students this choice seems more natural. All experimental outcomes are
of course independent of basis.



