Physics 115C Third Problem Set

Harry Nelson

Office Hours W 10-noon

TA: Lawrence Lin, Office Hours M10-11, Tu 12:30-1:30, W9-10

due Thursday, October 17, 2002

1. (a) Start from the Lagrangian in one dimension for two particles that interact through a potential:

$$L = \frac{1}{2}m_1\dot{x}_1^2 + \frac{1}{2}m_2\dot{x}_2^2 - V(x_1 - x_2).$$

Change position variables to X and x where

$$X = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} \quad , \quad x = x_1 - x_2$$

and determine the momenta, P and p, that are conjugate to X and x, by evaluating $\partial L/\partial \dot{X}$ and $\partial L/\partial \dot{x}$. Then express P and p in terms of p_1 and p_2 , the momenta conjugate to x_1 and x_2 .

- (b) Now treat coordinate and momentum variables as operators. Assume that $[x_1, p_1] = [x_2, p_2] = i\hbar$, and explicitly evaluate [X, P], [X, p], [x, P], and [x, p] using the expressions from part (a).
- 2. Imagine the hygrogenic atom that consists of a negative τ lepton, which has charge -1 and $m_{\tau}c^2 = 1777 \,\text{MeV}$, bound to a proton. Evaluate numerically the binding energy of the ground state, as well as the length scale \tilde{a} defined on page 20 of the notes.
- 3. (a) Find the eigenvalues and eigenvectors of the operator that represents s_y :

$$\frac{\hbar}{2} \left[\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right]$$

(b) Find the values of θ and ϕ necessary to express the eigenvectors in part (a) in the form

$$\begin{bmatrix} e^{-i\phi/2}\cos\theta/2\\ e^{i\phi/2}\sin\theta/2 \end{bmatrix}$$

Don't worry if there is a common phase factor of difference between this part and your result from part (a).

- (c) Evaluate the expectation value of s_y for general θ and ϕ , using the general state vector parameterized in part (b).
- 4. Explicitly find the eigenvalues and eigenvectors of the matrix:

$$\sigma_n = \cos\theta \, \sigma_z + \sin\theta \cos\phi \, \sigma_x + \sin\theta \sin\phi \, \sigma_y$$

1