Big ideas:

- 1-2 (but can be used well in spherically symmetric situations, e.g., α-decay).
- When $V(x)$ changes "slowly".
- "Wavey"... describes tunnelling of particles "under" high potentials.

\[\psi(x) = A e^{\pm i k x} \]

\[E = \frac{p^2}{2m} = E - V \]

\[\hbar k = p = \sqrt{2m(E-V)} \]

\[k = \frac{1}{\hbar} \sqrt{2m(E-V)} \]

$kx \rightarrow "phase advance" \text{ in distance } x$...
Suppose the following situation:

\[E \quad \text{(constant)} \]

Kinetic: \[-E - V(x) = \frac{p^2}{2m} \]

\[V(x) \quad \text{not constant} \]

\[\text{maybe} \quad (\hbar k(x))^2 = p^2 = 2m(E-V(x)) \]

\[k(x) = \frac{1}{\hbar} \sqrt{2m(E-V(x))} \]

Phase advance: instead of \(kx \)

\[= \int dx \, k(x) \]

\[\psi(x) = Ae^{\pm i\int dx \, k(x)} = Ae^{\pm \frac{i}{\hbar} \int \text{S}(x) dx} \]

Lowest order dependence of \(A \) on \(x \)
Physically, expect

\[|\psi(x)|^2 \propto \frac{1}{\sqrt{V(x)}} \quad \text{velocity} \]

but \[V(x) = \frac{p(x)}{m} \implies \psi^2 \propto \frac{1}{p} \]

so,

\[\psi(x) = \frac{C}{\sqrt{p(x)}} e^{-\frac{i}{\hbar} \int p(x) dx} \]

\[p(x) = \sqrt{2m(E-V(x))} \]

\[\Rightarrow \text{formal derivation pp. 316/317} \]

\[\Rightarrow (\text{Qualitatively decreasing wavelength, increasing amplitude}) \]

\[\Rightarrow 2\pi \rightarrow 1 \quad \text{phase advance} \]

\[\text{Increasing wavelength, decreasing amplitude} \]

\[\text{Constant } V \]
"Trapped" in a well.

\[V(x) \]

not a constant.

\[\psi(x) = \frac{1}{\sqrt{p(x)}} \left[C_+ e^{i \frac{1}{\hbar} \int p(x) dx} + C_- e^{-i \frac{1}{\hbar} \int p(x) dx} \right] \]

\[\psi(0) = \psi(a) = 0! \]

with a little rearrangement,

\[\psi(x) \equiv \frac{1}{\sqrt{p(x)}} \left[C_1 \sin \left(\frac{1}{\hbar} \int p(x) dx \right) + C_2 \cos \left(\frac{1}{\hbar} \int p(x) dx \right) \right] \]

\[i (C_+ - C_-) \left[\frac{e^i - e^{-i}}{2i} \right] \]

\[(C_+ + C_-) \left[\frac{e^i + e^{-i}}{2} \right] \]

\[\frac{1}{\hbar} \int_0^a p(x) dx = n \pi \]

\[n = 1 \text{ (half-wave)} \]

2 full wave

Utility... quantum wells.
Don’t dwell on this… even more interesting is Tunneling...

\[E \]

\[V(x) \]

\[A e^{\frac{j \phi}{\hbar}} x \rightarrow e^{\frac{j \phi}{\hbar}} x \]

\[V(x) = 0 \]

\[x = 0 \]

Incident: \(A e^{\frac{j \phi}{\hbar}} x \)

Reflection: \(B e^{\frac{j \phi}{\hbar}} x \)

What next? Reflection \(B e^{\frac{j \phi}{\hbar}} x \)

and “negative kinetic energy”\(T = E - V(x) < 0 \)

\[= \frac{p^2}{2m} < 0 \]

OK if \(p \) imaginary

then “under barrier” solutions

\[\sqrt{\rho(p(x))} Ce^{\frac{1}{\hbar} \int |p(x)| dx} + De^{-\frac{1}{\hbar} \int |p(x)| dx} \]
The first term is a rising exponential, second a dying one.
For a wave incident from left, only a dying exponential should be present.

Then:
\[P(x) \]
\[P(x) \]
\[x = 0 \]
\[x = \text{much smaller} \]

\[
\frac{|P(x)|}{|A|} \sim e^{-\frac{1}{h} \int |P(x)| dx}
\]

\[
\frac{1}{\sqrt{P(x)}} \text{ neglected}
\]

\[T = \frac{|P|^2}{|A|^2} = e^{-2\theta}
\]

\[\gamma = \frac{1}{h} \int_0^a |P(x)| dx
\]
Unstable Nuclei

Some nuclei are actually unstable to breaking into smaller fragments.

In earth:

\[^{238}_{92}U \rightarrow ^{234}_{90}Th + \gamma \]

\[^{232}_{90}Th \rightarrow ^{228}_{88}Ra + ^4He \]

\[^{235}_{92}U \rightarrow ^{231}_{90}Th + ^4He \]

Absence of shorter-lived isotopes - EARTH's AGE

Many shorter lived cases exist:

1) In decay chain of above:
 \[\rightarrow ^{222}_{86}Ra \quad (T_{1/2} \approx 1600 \text{ y}) \]

2) Artificial Produced
 \[\rightarrow ^{239}_{94}Pu \quad (T_{1/2} \approx 24,000 \text{ y}) \]
Idea: $Z = 90$

$^{234} Th \rightarrow r \rightarrow ^{4} He$ (both at rest)

LESS ENERGETIC THAN

$^{238} U$

What keeps $^{234} Th + ^{4} He$ together?

STRONG FORCE ...

$U(r)$

$\not \sim 0$.

stable

$\sim 1/r$

tunnels at