
Here is a review of some (but not all) of the topics you should know for the
midterm. These are things I think are important to know. I haven’t seen the
test, so there are probably some things on it that I don’t cover here. Hopefully
this covers most of them.

• Vector Spaces
Review properties on Shankar page 2
Closure under multiplication: If |u〉 and |v〉 ∈ V ,
then a|u〉 + b|v〉 ∈ V for any a, b. Note when b = 0
this takes care of scalar multiplication also.
Inverses, identity, etc.

• Linear independence
A set of vectors {|vi〉} is linearly independent if a|v1〉+
b|v2〉+· · · = 0 has only one solution: a = b = · · · = 0.

• Gram-Schmidt procedure
If you have a set of linearly independent vectors
|I〉, |II〉, . . . you can always construct an orthonor-
mal set of vectors as follows:

|1〉 =
|I〉√
〈I|I〉

|2〉 =
|II〉 − |1〉〈1|II〉

normalization constant

|3〉 =
|III〉 − |1〉〈1|III〉 − |2〉〈2|III〉

normalization constant
. . .

The normalization constants are chosen so that 〈2|2〉 =
1, 〈3|3〉 = 1, . . . .

• Basis
A basis of a vector space V is a set of vectors {|vi〉}.
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Any vector |u〉 ∈ V can be written in terms of these
vectors: |u〉 = a|v1〉 = b|v2〉+ . . . always has a, b, . . .

so that the equation is satisified.

• Orthonormal (ON) basis
An ON basis is one for which 〈vi|vj〉 = δij.

• Decomposition of unity
If {|vi〉} is an ON basis, then

∑
i |vi〉〈vi| = I.

• Linear Operators
Linear operators have Ω˜ (a|u〉+b|v〉) = aΩ˜ |u〉+bΩ˜ |v〉.

• Operator Inverses
The inverse of the product of operators is given by
the inverses of those operators in reverse order: (Ω˜ Λ˜ )−1 =

Λ˜−1Ω˜ −1.

• Commutators
The commutator of two matrices is written [A, B] ≡
AB−BA. The anticommutator is written {A, B} =
[A, B]+ = AB + BA.

• Hermitian, Unitary, etc.
An operator A˜ is Hermitian if A˜ = A˜ †. It is unitary

if A˜ −1 = A˜ † or equivalently A˜ A˜ † = I.

An operator is anti-Hermitian if A˜ = −A˜ †. An oper-

ator is anti-unitary if, among other things, A˜ (a|u〉) =

a∗A˜ |u〉. Anti-Hermitian and anti-unitary operators

won’t show up often (if at all) in this class–in fact,
I can think of only one anti-unitary operator that
comes up in physics.
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• Projection operators
Defining equation: P˜ 2 = P˜ . Tr P˜ = dimensionality

of subspace onto which P projects. Example: I2 = I.
The trace of an operator is the sum of the diagonal
elements of its matrix representation. In N dimen-
sions, the identity operator is a N by N matrix with
N 1’s on the diagonal, so Tr I = N .

• Matrix elements
Inserting a decomposition of unity twice,

Ωij = 〈i|Ω˜ |j〉
Ω˜ =

∑
ij

|i〉Ωij〈j|

For a vector, the components are given by

vi = 〈i|v〉
|v〉 =

∑
i

|i〉〈i|v〉︸︷︷︸
vi

=
∑

i

vi|i〉

• Change of basis
A change of basis from one ON basis (the “unprimed”
basis {|i〉}) to another basis (the “primed” basis {|i′〉})
transforms operators and vectors as follows (insert-
ing decompositions of I),

〈i′|A˜ |j′〉︸ ︷︷ ︸
A′

i′j′

=
∑
ij

〈i′|i〉︸︷︷︸
(U†)i′i

〈i|A˜ |j〉︸ ︷︷ ︸
Aij

〈j|j′〉︸ ︷︷ ︸
(U)jj′

〈i′|v〉︸ ︷︷ ︸
v′′

i

=
∑

i

〈i′|i〉︸︷︷︸
(U†)i′i

〈i|v〉︸︷︷︸
vi
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Note that Ujj′ is a matrix for which the j′th basis
vector goes in j′th column.

• Eigenvectors, eigenvalues
If

A˜ |v〉 = a|v〉 |v〉 6= 0

then |v〉 is an eigenvector of A˜ with eigenvalue a.

• Determining eigenvalues Solve the equation

det
(
A − aI

)
= 0

where A is a matrix representation of A˜ . The left

hand side ends up being a polynomial called the
“characteristic polynomial” of the operator, and the
equation is called the “characteristic equation” of the
operator. For an N by N matrix A, the polynomial
is an N th-order polynomial, and so the equation has
N solutions. They need not be distinct – one or more
of the eigenvalues can be the same number. If that
happens, that eigenvalue is called “degenerate.”

• Eigenvectors
Once you have the eigenvalues, solve

A

 α

β

. . .

 = a

 α

β

. . .


for each eigenvalue to get the associated eigenvector
(α, β, ...). If the eigenvalue is nondegenerate, you’ll
have N unknowns α, β, ... and N −1 equations =⇒
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one-parameter family of eigenvectors. Impose nor-
malization condiition α∗α+β∗β... = 1 to fix the final
free parameter.
If the eigenvalue is m-fold degenerate (m of the eigen-
values are the same) then you get N free parameters
and N−(1+m) equations, and thus an m-parameter
family of eigenvectors. Example: suppose you get
the eigenvector

|v〉 =

 α

β

−β


= α

1
0
0

 + β

 0
1
−1


You can split it up into two or more “basis” vectors
that “span the degenerate subspace”–in the above
example, any eigenvector of that eigenvalue can be
written as a linear combination of the two vectors
with combination coefficients α and β.

• Diagonalization
If {|i〉} are the normalized eigenvectors of A, you can
represent A in that “eigenbasis”, and if the eigenvec-
tors are normalized, the new matrix representation
will be a diagonal matrix with the eigenvalues as the
diagonal elements. As discussed for changes of basis,
U is constructed

U =
[
|1〉 |2〉 . . .

]
If the eigenvectors are not normalized, you’ll still get
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a diagonal matrix, but the diagonal elements will not
be the eigenvalues of A.

• Simultaneous Diagonalization
Suppose we have a matrix B that commutes with A:
[A, B] = 0. Then the ON basis that diagonalizes A is
the same ON basis that diagonalizes B–the eigenvec-
tors of B are the same as the (orthonormal) eigenvec-
tors of A, but with different eigenvalues (B|i〉 = b|i〉).
They diagonalize B into a matrix with B’s eigenval-
ues on the diagonal.

One of the reasons one cares about this is illustrated
as follows. Suppose you have a 1000 by 1000 ma-
trix B. The characteristic equation is a 1000th-
order polynomial. For 2nd order polynomials, the
quadratic equation can solve the characteristic equa-
tion; for 3rd and 4th order polynomials we also have
equations. But for higher-order polynomials there is
no general way of finding the roots, and so finding
the eigenvalues would be very hard. But, if you can
find an A that commutes with B, you can find the
eigenvalues and eigenvectors of A instead of solving
the characteristic equation for B. If you can find an
A for which diagaonlization is very easy, then all you
have to do is matrix multiplication to diagonalize B

and find its eigenvalues. It saves a lot of work.

• Delta functions
Suppose you have an interval γ (e.g. γ = (−∞,∞).
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Then the defining equation of a delta function is∫
γ

f(x)δ(x)dx = f(0)

if 0 ∈ γ and the result is zero if zero is not in the
interval. Also, integrating by substituting u = g(x),∫

γ

f(x)δ(g(x))dx =

∫
γ

f(x(u))δ(u)
du

dg(x(u))
dx

=
∑

i

f(xi)

|g′(xi)|

where xi is a solution of g(xi) = 0 and xi ∈ γ. Why
the absolute value sign is required is a homework
problem for Monday. Finally, integrating by parts,∫

γ

f(x)
dδ(x)

dx
dx = f(x)δ(x)

∣∣∣∣∣
∂γ

−
∫

γ

df

dx
δ(x)dx

where ∂γ is the boundary of the interval γ (e.g. if
γ = (−1, 1), f(x)δ(x)|∂γ = f(x)δ(x)|1−1. Since δ(x)
is zero everywhere except x = 0, the first term is
zero as long as 0 ∈ γ (and not on the boundary) and
so ∫

γ

f(x)
dδ(x)

dx
dx = −

∫
γ

df

dx
δ(x)dx
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