Here is a review of some (but not all) of the topics you should know for the
midterm. These are things I think are important to know. I haven’t seen the
test, so there are probably some things on it that I don’t cover here. Hopefully
this covers most of them.

« Vector Spaces
Review properties on Shankar page 2
Closure under multiplication: If |u) and |[v) € V|
then a|u) + bjv) € V for any a,b. Note when b = 0
this takes care of scalar multiplication also.
Inverses, identity, etc.

e Linear independence
A set of vectors {|v;) } is linearly independent if a|v; )+
blvg)+- -+ = 0 has only one solution: a =b=--- = 0.

e Gram-Schmidt procedure
If you have a set of linearly independent vectors

|I),|I1I),... you can always construct an orthonor-
mal set of vectors as follows:
=2
(I|1)

9y — [11) — [1)(1|1T])
normalization constant
D) — )T — |2 @)

normalization constant

3)

The normalization constants are chosen so that (2|2) =
L{33)=1,....

e Basis
A basis of a vector space V is a set of vectors {|v;) }.
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Any vector |u) € V' can be written in terms of these
vectors: |u) = alvy) = blvg) + ... always has a,b,. ..
so that the equation is satisified.

Orthonormal (ON) basis
An ON basis is one for which (v;|v;) = §;;.

Decomposition of unity
If {|v;)} is an ON basis, then > . |v;)(v;| = L.

Linear Operators
Linear operators have Q(alu)+0b|v)) = aQ|u)+bQ2v).

Operator Inverses
The inverse of the product of operators is given by
the inverses of those operators in reverse order: (QA)™! =

AT

Commutators

The commutator of two matrices is written [A, B] =
AB — BA. The anticommutator is written {A, B} =
[A, B], = AB + BA.

Hermitian, Unitary, etc.
An operator A is Hermitian if A = A'. Tt is unitary

if A7' = A" or equivalently AA" =1.

An operator is anti-Hermitian if A = —A'. An oper-
ator is anti-unitary if, among other things, A(a|u)) =
a*Alu). Anti-Hermitian and anti-unitary operators

won’t show up often (if at all) in this class—in fact,
I can think of only one anti-unitary operator that
comes up in physics.



e Projection operators
Defining equation: P? = P. Tr P = dimensionality

of subspace onto which P projects. Example: I? = 1.
The trace of an operator is the sum of the diagonal
elements of its matrix representation. In N dimen-
sions, the identity operator is a N by /N matrix with
N 1’s on the diagonal, so TrI = N.

e Matrix elements
Inserting a decomposition of unity twice,

€5 = (i)
Q= )9l
ij
For a vector, the components are given by

v; = (i|v)

|v) = Z ‘i>@ = uili)
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e Change of basis
A change of basis from one ON basis (the “unprimed”
basis {|7) }) to another basis (the “primed” basis {|i')})
transforms operators and vectors as follows (insert-
ing decompositions of I),

(71417 = 3 @l Gl

—— i ——
A;/j/ 1) (UT)Z/’L Aij (U)g]’
i'lv) = i3 (i|v
('|v) Z( 2) {ilv)
v'; LUy v



Note that Uj; is a matrix for which the 4" basis

vector goes in 5" column.

Eigenvectors, eigenvalues
If

Alp) = alv)  |v) #0
then |v) is an eigenvector of A with eigenvalue a.

Determining eigenvalues Solve the equation
det (A — a]I) =0

where A is a matrix representation of A. The left

hand side ends up being a polynomial called the
“characteristic polynomial” of the operator, and the
equation is called the “characteristic equation” of the
operator. For an N by N matrix A, the polynomial
is an N*-order polynomial, and so the equation has
N solutions. They need not be distinct — one or more
of the eigenvalues can be the same number. If that
happens, that eigenvalue is called “degenerate.”

Eigenvectors
Once you have the eigenvalues, solve

a «

Al f|=a|p

for each eigenvalue to get the associated eigenvector
(c, B, ...). If the eigenvalue is nondegenerate, you’ll
have N unknowns «, 3, ... and N — 1 equations —



one-parameter family of eigenvectors. Impose nor-
malization condiition a*a+ *3".. = 1 to fix the final
free parameter.

If the eigenvalue is m-fold degenerate (m of the eigen-
values are the same) then you get N free parameters
and N — (1+m) equations, and thus an m-parameter
family of eigenvectors. Example: suppose you get
the eigenvector

v)=| B
—f

1 0

=a |0l +0|1

0 —1

You can split it up into two or more “basis” vectors
that “span the degenerate subspace”—in the above
example, any eigenvector of that eigenvalue can be
written as a linear combination of the two vectors
with combination coefficients o and £.

Diagonalization

If {|#)} are the normalized eigenvectors of A, you can
represent A in that “eigenbasis”, and if the eigenvec-
tors are normalized, the new matrix representation
will be a diagonal matrix with the eigenvalues as the
diagonal elements. As discussed for changes of basis,
U is constructed

v=11 12 ..]

If the eigenvectors are not normalized, you'll still get



a diagonal matrix, but the diagonal elements will not
be the eigenvalues of A.

e Simultaneous Diagonalization

Suppose we have a matrix B that commutes with A:
[A, B] = 0. Then the ON basis that diagonalizes A is
the same ON basis that diagonalizes B—the eigenvec-
tors of B are the same as the (orthonormal) eigenvec-
tors of A, but with different eigenvalues (B|i) = b|i)).
They diagonalize B into a matrix with B’s eigenval-
ues on the diagonal.

One of the reasons one cares about this is illustrated
as follows. Suppose you have a 1000 by 1000 ma-
trix B. The characteristic equation is a 1000th-
order polynomial. For 2nd order polynomials, the
quadratic equation can solve the characteristic equa-
tion; for 3rd and 4th order polynomials we also have
equations. But for higher-order polynomials there is
no general way of finding the roots, and so finding
the eigenvalues would be very hard. But, if you can
find an A that commutes with B, you can find the
eigenvalues and eigenvectors of A instead of solving
the characteristic equation for B. If you can find an
A for which diagaonlization is very easy, then all you
have to do is matrix multiplication to diagonalize B
and find its eigenvalues. It saves a lot of work.

e Delta functions
Suppose you have an interval v (e.g. 7 = (—00,00).



Then the defining equation of a delta function is
| f@bads = 10)
o

if 0 € v and the result is zero if zero is not in the
interval. Also, integrating by substituting u = g(z),

/ flelgtoyds = / flatw)otw) dg(cfém =2 f/((x)

: s) ~ 2 g/ ()

where x; is a solution of g(z;) = 0 and z; € v. Why
the absolute value sign is required is a homework
problem for Monday. Finally, integrating by parts,

df
— /7%5(33)dx

where 0v is the boundary of the interval v (e.g. if
Y = (~1,1), f(@)3(@)la, = S@)0@)]L,. Since o(z)

is zero everywhere except x = 0, the first term is
zero as long as 0 € v (and not on the boundary) and

/f(:c)dii(;)d:v: —/ﬁ(S(x)dx

7dsz:

[ 102 s = i)

vy




