Here is a review of some (but not all) of the topics you should know for the midterm. These are things I think are important to know. I haven't seen the test, so there are probably some things on it that I don't cover here. Hopefully this covers most of them.

• Vector Spaces

Review properties on Shankar page 2 Closure under multiplication: If $|u\rangle$ and $|v\rangle \in V$, then $a|u\rangle + b|v\rangle \in V$ for any a, b. Note when b = 0this takes care of scalar multiplication also. Inverses, identity, etc.

• Linear independence

A set of vectors $\{|v_i\rangle\}$ is linearly independent if $a|v_1\rangle + b|v_2\rangle + \cdots = 0$ has only one solution: $a = b = \cdots = 0$.

• Gram-Schmidt procedure

If you have a set of linearly independent vectors $|I\rangle$, $|II\rangle$,... you can always construct an orthonormal set of vectors as follows:

$$\begin{split} |1\rangle &= \frac{|I\rangle}{\sqrt{\langle I|I\rangle}} \\ |2\rangle &= \frac{|II\rangle - |1\rangle \langle 1|II\rangle}{\text{normalization constant}} \\ |3\rangle &= \frac{|III\rangle - |1\rangle \langle 1|III\rangle - |2\rangle \langle 2|III\rangle}{\text{normalization constant}} \end{split}$$

The normalization constants are chosen so that $\langle 2|2 \rangle = 1, \langle 3|3 \rangle = 1, \ldots$

. . .

• Basis

A basis of a vector space V is a set of vectors $\{|v_i\rangle\}$.

Any vector $|u\rangle \in V$ can be written in terms of these vectors: $|u\rangle = a|v_1\rangle = b|v_2\rangle + \ldots$ always has a, b, \ldots so that the equation is satisified.

- Orthonormal (ON) basis An ON basis is one for which $\langle v_i | v_j \rangle = \delta_{ij}$.
- Decomposition of unity If $\{|v_i\rangle\}$ is an ON basis, then $\sum_i |v_i\rangle\langle v_i| = \mathbb{I}$.
- Linear Operators Linear operators have $\Omega(a|u\rangle + b|v\rangle) = a\Omega|u\rangle + b\Omega|v\rangle$.
- Operator Inverses

The inverse of the product of operators is given by the inverses of those operators in reverse order: $(\Omega \Lambda)^{-1} =$

 $\underset{\sim}{\Lambda^{-1}\Omega^{-1}}.$

• Commutators

The commutator of two matrices is written $[A, B] \equiv AB - BA$. The anticommutator is written $\{A, B\} = [A, B]_+ = AB + BA$.

• Hermitian, Unitary, etc.

An operator \underline{A} is Hermitian if $\underline{A} = \underline{A}^{\dagger}$. It is unitary if $\underline{A}^{-1} = \underline{A}^{\dagger}$ or equivalently $\underline{A}\underline{A}^{\dagger} = \mathbb{I}$.

An operator is anti-Hermitian if $\underline{A} = -\underline{A}^{\dagger}$. An operator is anti-unitary if, among other things, $\underline{A}(a|u\rangle) = a^*\underline{A}|u\rangle$. Anti-Hermitian and anti-unitary operators won't show up often (if at all) in this class-in fact, I can think of only one anti-unitary operator that comes up in physics. • Projection operators

Defining equation: $\underline{P}^2 = \underline{P}$. $Tr \, \underline{P}$ = dimensionality of subspace onto which P projects. Example: $\mathbb{I}^2 = \mathbb{I}$. The trace of an operator is the sum of the diagonal elements of its matrix representation. In N dimensions, the identity operator is a N by N matrix with N 1's on the diagonal, so $Tr \, \mathbb{I} = N$.

• Matrix elements

Inserting a decomposition of unity twice,

$$\Omega_{ij} = \langle i | \Omega | j \rangle$$
$$\Omega_{ij} = \sum_{ij} | i \rangle \Omega_{ij} \langle j |$$

For a vector, the components are given by

$$|v\rangle = \sum_{i} |i\rangle \underbrace{\langle i|v\rangle}_{v_{i}} = \sum_{i} v_{i}|i\rangle$$

• Change of basis

A change of basis from one ON basis (the "unprimed" basis $\{|i\rangle\}$) to another basis (the "primed" basis $\{|i'\rangle\}$) transforms operators and vectors as follows (inserting decompositions of \mathbb{I}),

$$\underbrace{\langle i'|\underline{A}|j'\rangle}_{A'_{i'j'}} = \sum_{ij} \underbrace{\langle i'|i\rangle}_{(U^{\dagger})_{i'i}} \underbrace{\langle i|\underline{A}|j\rangle}_{A_{ij}} \underbrace{\langle j|j'\rangle}_{(U)_{jj'}}$$
$$\underbrace{\langle i'|v\rangle}_{v''_i} = \sum_{i} \underbrace{\langle i'|i\rangle}_{(U^{\dagger})_{i'i}} \underbrace{\langle i|v\rangle}_{v_i}$$

Note that $U_{jj'}$ is a matrix for which the j'^{th} basis vector goes in j'^{th} column.

• Eigenvectors, eigenvalues If

$$A|v\rangle = a|v\rangle \qquad |v\rangle \neq 0$$

then $|v\rangle$ is an eigenvector of A with eigenvalue a.

• Determining eigenvalues Solve the equation

$$det(A - a\mathbb{I}) = 0$$

where A is a matrix representation of \underline{A} . The left hand side ends up being a polynomial called the "characteristic polynomial" of the operator, and the equation is called the "characteristic equation" of the operator. For an N by N matrix A, the polynomial is an N^{th} -order polynomial, and so the equation has N solutions. They need not be distinct – one or more of the eigenvalues can be the same number. If that happens, that eigenvalue is called "degenerate."

• Eigenvectors

Once you have the eigenvalues, solve

$$A\begin{bmatrix}\alpha\\\beta\\\dots\end{bmatrix} = a\begin{bmatrix}\alpha\\\beta\\\dots\end{bmatrix}$$

for each eigenvalue to get the associated eigenvector $(\alpha, \beta, ...)$. If the eigenvalue is nondegenerate, you'll have N unknowns $\alpha, \beta, ...$ and N-1 equations \Longrightarrow

one-parameter family of eigenvectors. Impose normalization condiition $\alpha^* \alpha + \beta^* \beta^* \dots = 1$ to fix the final free parameter.

If the eigenvalue is *m*-fold degenerate (*m* of the eigenvalues are the same) then you get *N* free parameters and N - (1+m) equations, and thus an *m*-parameter family of eigenvectors. Example: suppose you get the eigenvector

$$|v\rangle = \begin{bmatrix} \alpha \\ \beta \\ -\beta \end{bmatrix}$$
$$= \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

You can split it up into two or more "basis" vectors that "span the degenerate subspace"—in the above example, any eigenvector of that eigenvalue can be written as a linear combination of the two vectors with combination coefficients α and β .

• Diagonalization

If $\{|i\rangle\}$ are the normalized eigenvectors of A, you can represent A in that "eigenbasis", and if the eigenvectors are normalized, the new matrix representation will be a diagonal matrix with the eigenvalues as the diagonal elements. As discussed for changes of basis, U is constructed

$$U = \begin{bmatrix} |1\rangle & |2\rangle & \dots \end{bmatrix}$$

If the eigenvectors are not normalized, you'll still get

a diagonal matrix, but the diagonal elements will not be the eigenvalues of A.

• Simultaneous Diagonalization

Suppose we have a matrix B that commutes with A: [A, B] = 0. Then the ON basis that diagonalizes A is the same ON basis that diagonalizes B-the eigenvectors of B are the same as the (orthonormal) eigenvectors of A, but with different eigenvalues $(B|i\rangle = b|i\rangle)$. They diagonalize B into a matrix with B's eigenvalues on the diagonal.

One of the reasons one cares about this is illustrated as follows. Suppose you have a 1000 by 1000 matrix B. The characteristic equation is a 1000thorder polynomial. For 2nd order polynomials, the quadratic equation can solve the characteristic equation; for 3rd and 4th order polynomials we also have equations. But for higher-order polynomials there is no general way of finding the roots, and so finding the eigenvalues would be very hard. But, if you can find an A that commutes with B, you can find the eigenvalues and eigenvectors of A instead of solving the characteristic equation for B. If you can find an A for which diagaonlization is very easy, then all you have to do is matrix multiplication to diagonalize Band find its eigenvalues. It saves a lot of work.

• Delta functions

Suppose you have an interval γ (e.g. $\gamma = (-\infty, \infty)$).

Then the defining equation of a delta function is

$$\int_{\gamma} f(x)\delta(x)dx = f(0)$$

if $0 \in \gamma$ and the result is zero if zero is not in the interval. Also, integrating by substituting u = g(x),

$$\int_{\gamma} f(x)\delta(g(x))dx = \int_{\gamma} f(x(u))\delta(u)\frac{du}{\frac{dg(x(u))}{dx}} = \sum_{i} \frac{f(x_i)}{|g'(x_i)|}$$

where x_i is a solution of $g(x_i) = 0$ and $x_i \in \gamma$. Why the absolute value sign is required is a homework problem for Monday. Finally, integrating by parts,

$$\int_{\gamma} f(x) \frac{d\delta(x)}{dx} dx = f(x)\delta(x) \bigg|_{\partial \gamma} - \int_{\gamma} \frac{df}{dx} \delta(x) dx$$

where $\partial \gamma$ is the boundary of the interval γ (e.g. if $\gamma = (-1, 1), f(x)\delta(x)|_{\partial\gamma} = f(x)\delta(x)|_{-1}^1$. Since $\delta(x)$ is zero everywhere except x = 0, the first term is zero as long as $0 \in \gamma$ (and not on the boundary) and so

$$\int_{\gamma} f(x) \frac{d\delta(x)}{dx} dx = -\int_{\gamma} \frac{df}{dx} \delta(x) dx$$