Physics 115A Midterm

Harry Nelson

Monday, Feb. 10, 2003

Closed Book; no calculators. For full credit, show your work and make your reasoning clear to the graders.

The 'boldface' notation below is used for operators; thus, Ω is an abstract operator. In class we put a 'twiddle' under the Ω to denote that it was an operator. The symbol \doteq means 'is represented by'.

The quadratic formula for the roots to the equation $ax^2 + bx + c = 0$ is:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

- 1. (25 pts) Two kets have unit length: $|V_1\rangle$, and $|V_2\rangle$, so $\langle V_1|V_1\rangle = \langle V_2|V_2\rangle = 1$; these two kets are never equal, that is, $|V_1\rangle \neq |V_2\rangle$. The two projection operators are $\mathbf{P_1} = |V_1\rangle\langle V_1|$ and $\mathbf{P_2} = |V_2\rangle\langle V_2|$.
 - (a) Suppose $|V_1\rangle$ and $V_2\rangle$ are represented in an orthonormal basis by:

$$|V_1\rangle \doteq \begin{bmatrix} 1\\0 \end{bmatrix}$$
, $|V_2\rangle \doteq \begin{bmatrix} -\sqrt{\frac{1}{3}}\\\sqrt{\frac{2}{3}} \end{bmatrix}$.

- i. Find the matrices that represent P_1 and P_2 .
- ii. Use the matrix representations to find the matrix that represents the commutator $[\mathbf{P_1}, \mathbf{P_2}]$.
- (b) In general, what conditions on $|V_1\rangle$ and $|V_2\rangle$ will guarantee that the commutator $[\mathbf{P_1}, \mathbf{P_2}] = 0$?
- 2. (20 pts) Consider the linear operator Ω which operates on abstract vectors in a space of dimension 2, and which is represented in one particular basis by the matrix:

$$\mathbf{\Omega} \doteq \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & i \\ i & 1 \end{array} \right].$$

- (a) Is Ω Hermitian?
- (b) Is Ω unitary?
- (c) What are the eigenvalues of Ω ?
- (d) What are the representations of the normalized eigenvectors of Ω ?

3. (40 pts) The linear operators Ω and Λ operate on abstract vectors in a space of dimension 3, and in one particular orthonormal basis they are represented by the matrix:

$$\mathbf{\Omega} \doteq \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad , \quad \mathbf{\Lambda} \doteq \begin{bmatrix} \frac{2}{3}b & b & \frac{1}{3}b \\ b & b & b \\ \frac{1}{3}b & b & \frac{2}{3}b \end{bmatrix}$$

where b is a non-zero real number.

- (a) Do Ω and Λ commute?
- (b) Is Ω unitary?
- (c) One eigenket of Ω , $|\omega_3\rangle$, has an obvious representation in this basis, namely:

$$|\omega_3\rangle \doteq \left[\begin{array}{c} 0\\ 1\\ 0 \end{array} \right];$$

what is the eigenvalue ω_3 that corresponds to this eigenket?

- (d) Find the other two eigenvalues of Ω ; call ω_1 the smaller of the two, and ω_2 the larger of the two.
- (e) Find the unitary matrix that transforms the representation of Ω given above into the diagonal form:

$$oldsymbol{\Omega} \doteq \left[egin{array}{ccc} \omega_1 & 0 & 0 \ 0 & \omega_2 & 0 \ 0 & 0 & \omega_3 \end{array}
ight]$$

- (f) Apply the same unitary transformation to Λ .
- (g) What are the eigenvalues of Λ ?
- 4. (15 pts) Numerically evaluate the integral:

$$\int_{-\infty}^{\infty} \delta(4x - 2) \, \left[\frac{1}{2}x^2 - 1\right] dx$$