
ODMB VME Baseline Firmware Guide
UCSB ODMB Team

October 20, 2020

1 Test Instructions
This is document is a guide to using the ODMB7 baseline firmware for testing VME communication and copper
(x)DCFEB communication on the ODMB7 version 1 prototype boards. This firmware will confirm if VME
signals are properly received and sent to the VME back plane as well as if JTAG signals are properly received
and sent to the PPIB/(x)DCFEBs.

Physically, the ODMB should be inserted into an ODMB-compatible slot in a VME crate. There should be
a computer with appropriate optical drivers and capable of running some version of Emulib that is connected
to and able to control the crate’s VCC. This computer should be loaded with the vme_cli software available
at this repository. There should also be a computer equipped with the Vivado software and connected to the
JTAG port of the ODMB via a Xilinx red box. This can be the same or separate from the computer handling
VCC communication. Finally, the ODMB should be connected to the two skew-clear cables running to the
PPIB. When testing communication with each (x)DCFEB, a powered (x)DCFEB will need to be plugged into
the PPIB slot being tested. A diagram of this setup is shown in figure 1.

Figure 1: Test stand configuration for testing the ODMB7 VME baseline firmware.

1

https://github.com/jaebak/vme_cli


Figure 2: Programming device with Vivado, pictured for KCU105 evaluation board.

Figure 3: After clicking program device, the bit and ltx files can be specified.

To begin testing the VME firmware, the prototype boards should be loaded with the provided firmware and
the Vivado program equipped with the appropriate test probes. The provided .bit and .ltx files can be loaded
as shown in figures 2 and 3.

Once the firmware is loaded, VME commands can be sent using the vme_cli software. After compiling the
software with make, a VME command can be issued to the ODMB in a format demonstrated by the following
example.

./vme_cli --vcc_mac_address 02:00:00:00:00:4A --schar_port 2 --eth_name p5p2 --vme_write_read w
--vme_command 1020 --vme_data ff --vme_slot 19

The VCC MAC address, schar_port, eth_name, and VME slot should be adjusted based on the configu-
ration of the host computer and VME crate. The arguments vme_write_read, vme_command, and vme_data
indicate the actual content of the command issued to the ODMB. The vme_write_read argument takes on the
value w or r to indicate a write or read command respectively. In the case of read commands, no vme_data needs
to be provided. The vme_command and vme_data take 16 bit values specified as 4 hex characters. vme_data
values with fewer than 4 characters are interpreted by padding to the left with 0’s. Below, commands will be
listed in the format <vme_write_read> <vme_command> (<vme_data>) (//comment on command).

2



As a first test, the command R 4100 should be issued. The ODMB should respond with the return value
OD3B, which will be displayed by the vme_cli program.

If this is successful, a more complicated series of commands can be issued to read the User code from the
(x)DCFEBs. This is given in listing 1 for DCFEBs and listing 1 for xDCFEBs. The two R 1014 commands will
return the usercode, which should be DCFEB### where the #’s depend on the firmware version of the (x)DCFEB.
Note that the lower 16 bits get returned first.

W 1018 0000 //reset DCFEBs
W 1020 # //Select DCFEBs, use #=01, 02, 04, 08, 10, 20, or 40 to select DCFEB 1, 2, 3, 4, 5, 6, or

7 respectively
W 191C 3C8 //shift instruction "read usercode"
W 1F04 0000 //shift 16 upper data bits
R 1014 //read retrieved data bits
W 1F08 0000 //shift 16 lower data bits
R 1014 //read retrieved data bits

W 1018 0000 //reset DCFEBs
W 1020 # //Select DCFEBs, use #=01, 02, 04, 08, 10, 20, or 40 to select DCFEB 1, 2, 3, 4, 5, 6, or

7 respectively
W 1934 3C8 //shift instruction "read usercode"
W 1F30 FFFF //bypass instruction to other xDCFEB devices
W 1F30 FFFF //bypass instruction to other xDCFEB devices
W 1F30 FFFF //bypass instruction to other xDCFEB devices
W 1338 F //bypass instruction to other xDCFEB devices
W 1F04 0000 //shift 16 upper data bits
R 1014 //read retrieved data bits
W 1F08 0000 //shift 16 lower data bits
R 1014 //read retrieved data bits

If the returned values from R 4100 or R 1014 are not as expected, more information on debugging is given
in the next section.

2 Debugging
2.1 Check Clocks
The first check to perform if the R 4100 command fails is to check the ODMB clocks. If the CMS clock is not
received from the CCB or if the clock manager is not functional, the ODMB firmware will not be able to handle
VME communication. To diagnose these problems, one can first run the ILA un-triggered. If the ILA does not
respond, this is indicative of no clock signal, which can be caused by either not receiving the CMS clock from
the CCB or a malfunction of the clock manager in firmware.

If it is suspected that the CMS clock is not being received, an alternative firmware version with the ILA
directly reading the CMS clock signal can be generated. Alternatively, the firmware can be replaced with
an alternate version that uses the clock from the on-board clock synthesizer, which must be configured using
appropriate software. Failure to see the CMS clock directly and success with the alternate firmware indicates a
problem in receiving the clock from the CCB.

If the alternative firmware that reads the clock signal directly from the CCB demonstrates the clock is being
received, then the clock manager module in the firmware is likely at fault and firmware debugging is required.

2.2 Check VME Signals
If the clock signals look as expected, the next debugging step is to check that VME signals are being sent/re-
ceived. To diagnose VME problems, the VME crate should be restarted and the ODMB ILA equipped with the
VME signals listed in table 1. This table also lists the expected behavior of the signals and their response to
a R 4100 command in simulation is shown in figure 4. Once the ILA is equipped with the appropriate signals,
it should be triggered on vme_as_b=0. Once the ILA is armed, a R 4100 command should be issued from
vme_cli.

3



The first thing to check are the strobes and dtack. The VCC should pull vme_as_b low, then both bits of
vme_ds_b. Shortly after vme_ds_b is pulled low, the strobe signal become 1. After some time, the ODMB
should pull vme_dtack_v6_b low, and the VCC should de-assert vme_ds_b, then vme_as_b. If vme_as_b or
vme_ds_b is never pulled low, and vme_dir is low, there may be some problem receiving the appropriate signal,
which could be caused by ICs or traces on the ODMB. Further debugging may be performed with an oscilloscope
on appropriate IC legs. If vme_as_b and vme_ds_b are pulled low but strobe never goes high, the other vme_
signals listed in table 1 should be checked against their expected values. If these match their expected values,
additional firmware will need to be generated to debug firmware issues.

If the correct sequence of strobes and dtack is observed, then the VME command is being received by the
ODMB and the signals vme_data_out, vme_tovme, and vme_doe_b should be checked against their expected
values. If these signals match their expected values, external ICs and signal traces may need to be debugged.

If vme_data_out is incorrect or if strobe is asserted but vme_dtack_v6_b never goes low, it is likely that the
VME modules in the firmware are at fault. The dummy_confregs module that handles the R 4100 command is
very simple and thus not expected to fail. Information on debugging the cfebjtag module is given in the next
section.

Signal Long name Expected behavior
vme_data_in_buf Data in Value passed by vme_cli for write commands.
vme_data_out_buf Data out Value returned by ODMB.
vme_crate_addr Address The slot number should match the bitwise inverse of vme_ga_b when vme_as_b goes low.
vme_cmd Command Should match value passed by vme_cli.
vme_am Address Modifier. When vme_as_b goes low, this should be 111X10 or 111X01.
vme_gap_b Geographical address parity. Should be 1 if an odd number of bits in ga are 0 and 0 otherwise.
vme_ga_b Geographical address. Should correspond to the VME slot used.
vme_as_b Address strobe. Should go low to indicate address ready to read.
vme_ds_b Data strobe. Both bits should go low after vme_as_b to indicate data ready to read.
vme_sysfail_b Sysfail. Should be 1.
vme_berr_b Bus Error. Should be 1, but doesn’t matter for ODMB.
vme_iack_b Interrupt acknowledge. Should be 1.
vme_lword_b Load word. Should be 1 when vme_as_b goes low.
vme_write_b Write. Should be 0 for write commands and 1 for read commands.
vme_dtack_v6_b Data acknowledge. Should be issued by ODMB some time after receiving vme_ds_b low.
vme_dir To VME Should be go high when read commands are sent and low otherwise.
vme_doe_b Output Enable Should go low when read commands are sent.
strobe Stobe Should go high shortly after vme_ds_b goes low.

Table 1: Signals in VME interface

Figure 4: Simulated ODMB response to VME command R 4100. Note that in simulation 2EAD appears on the
vme_data_in line while in the real ODMB, a value of 0000 is expected.

4



2.3 Check CFEBJTAG
If the user code can not be successfully read back from the (x)DCFEBs, the first thing to check are the JTAG
communication lines. These signals are tms, tck, tdi(selected (x)DCFEB index), and tdo(selected (x)DCFEB
index), and are listed along with the other signals relevant to cfebjtag in table 2. Note that the signals in the
ILA are prefixed with dcfeb_. Their expected behavior along with that of other cfebjtag signals is shown in
figures 5 through 11.

As a first qualitative check, after each W 1X0Y, W 1X1Y, or W 1X3Y command, the tms signal and the tck
only for the selected (x)DCFEB should respond with some pattern. This can be observed by again triggering on
vme_as_b=0. If they do not respond, this indicates a bug in generating a busy signal or appropriate tms response
and the appropriate paragraph below should be referenced. If other tck clocks are running, this indicates a
problem in selecting the correct dcfeb and the selfeb signal should be monitored as discussed below.

If tms and tck seem to respond to appropriate commands, one should check that the correct tdo bits are
being returned from the (x)DCFEBs. When the W 1F04 and W 1F08 commands are issued, one can check the
value of tdo on rising edges of tck after tms has been 0 for two cycles up to and including the first tck edge
for which tms is 1. The bits should be DCFEB### noting that the shifted bits on tdo appear in reverse order.

If the tdo bits are not correct, it may be necessary to inspect each W 1X0Y, W 1X1Y, and W 1X3Y command
issued in detail. Figures 5 through 11 show the expected behavior for each command. To compare to the figures,
check the value of tdi and tms against the values shown in the figures for each rising edge of tck. If the tdi or
tms are incorrect, this indicates a bug in the logic that generates the tms patterns or transfers the input to tdi.

If the tms clock never begins running after a (x)DCFEB communication command is issued, this indicates
either a problem in generating a busy signal or a failure to select any (x)DCFEBs. To diagnose the prior issue,
check the strobe, load, busy, and tck_global signals after issueing a command. The load should go high once
after receiving strobe high. If this does not happen, check that vme_cmd is correct. After load goes high, busy
should go high until the communication is finished and while busy is running, tck_global should be running.
If this does not happen, more debugging will be required for the busy logic.

If multiple tms clocks are running or if tck_global is running but no other tck signals, this indicates a
problem with selecting (x)DCFEBs. One should check the selfebsignal after issuing a W 1020 to see if updates
to reflect selected (x)DCFEBs. The command R 1024 can also be used to read back the currently selected
(x)DCFEBs to check. After issuing a W 1020 command, one run the ILA untriggered or issue R 1024 to see if
the selected (x)DCFEBs are still selected. If not, it is likely the ODMB received a spurious reset, and additional
firmware should be made to investigate spurious reset signals.

If tms is not generated properly for a particular command, signals involved in tms pattern generation should
be investigated. In particular, for W 1Y1C and W 1Y34, the shihead signal should be asserted to shift the
instruction header before shifting data. For the W 1Y04 command, the shdhead signal should be asserted to
shift the data header. For all JTAG shift commands, the shdata signal should be asserted to shift the tdi/tdo
data. Then, for W 1Y1C, W 1Y38, and W 1Y08 commands, the shtail signal should be asserted to shift the tailer
at the end of the shifting. If any of these signals are not asserted, additional firmware should be generated
to analyze the VHDL logic generating the signal in question. If the signals are generated, but the tms or tdi
patterns are not correct, additional firmware should be generated to analyze the shifting logic.

Signal Description Expected behavior
dcfeb_tms JTAG Control While tck is running, this should various values depending on command issued. See figures 5

through 11 for expected behavior for DCFEB commands
dcfeb_tck JTAG Clock After a W 1X0Y, W 1X1Y, or W 1X3Y command, the TCK for the selected

(x)DCFEB should oscillate for several cycles
dcfeb_tdi JTAG Input When tck is running, the bits matching the provided vme_data should be seen.
dcfeb_tdo JTAG Output During the final W 1F04 and W 1F08 commands, the tdo signal for the

selected (x)DCFEB should be the bits for its usercode.
load Load Should go high once for each (x)DCFEB communication command issued.
busy Busy Should be asserted while JTAG shifts in progress.
tck_global Global JTAG clock. Should be sent to selected (x)DCFEB(s) as tck.
selfeb Selected (x)DCFEB Should match selected (x)DCFEB(s) after issuing W 1020 command.
shihead Shift instruction header. Should go high for W 1Y1C and W 1Y34 commands.
shdhead Shift data header. Should go high for W 1Y04 commands.
shdata Shift data. Should go high for all JTAG shift commands commands.
shtail Shift tailer. Should go high for W 1Y08, W 1Y1C, and W 1Y38 commands.

Table 2: Signals related to JTAG debugging

5



Figure 5: Simulated ODMB response to VME command W 1018 0000. Note that this JTAG reset commands
causes tck for each (x)DCFEB to run.

Figure 6: Simulated ODMB response to VME command W 191C 03C8. In this example, DCFEB 2 is selected.
The tdo signals are unimportant and may differ for real DCFEBs.

6



Figure 7: Simulated ODMB response to VME command W 1934 03C8. In this example, xDCFEB 2 is selected.
The tdo signals are unimportant and may differ for real xDCFEBs.

Figure 8: Simulated ODMB response to VME command W 1F30 FFFF. In this example, xDCFEB 2 is selected.
The tdo signals are unimportant and may differ for real xDCFEBs.

7



Figure 9: Simulated ODMB response to VME command W 1338 000F. In this example, xDCFEB 2 is selected.
The tdo signals are unimportant and may differ for real xDCFEBs.

Figure 10: Simulated ODMB response to VME command W 1F04 0000. In this example, xDCFEB 2 is selected.
The tdo signal in simulation is A093 rather than B### expected for a real (x)DCFEB.

8



Figure 11: Simulated ODMB response to VME command W 1F08 0000. In this example, xDCFEB 2 is selected.
The tdo signal in simulation is 0424 rather than DCFE expected for a real (x)DCFEB.

9


	Test Instructions
	Debugging
	Check Clocks
	Check VME Signals
	Check CFEBJTAG


