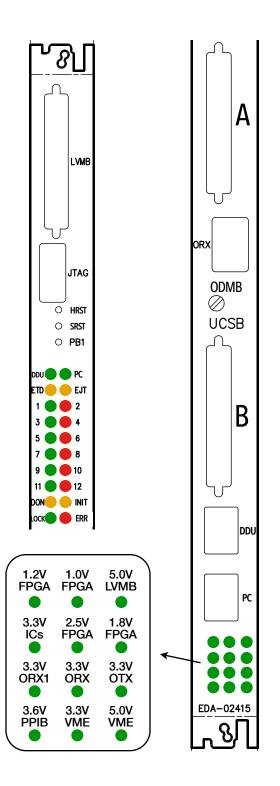
CMS UCSB

9<sup>th</sup> April 2014

# ODMB user's manual

Optical DAQ MotherBoard for the ME1/1 stations of the CMS muon endcap detector

### Firmware tag: V03-03


### ODMB.V2, ODMB.V3, and ODMB.V4 compatible

Manuel Franco Sevilla, Frank Golf, Guido Magazzù, Tom Danielson, Adam Dishaw, Jack Bradmiiller-Feld UC Santa Barbara

# Table of Contents

| Front panel                                             | 2      |
|---------------------------------------------------------|--------|
| General                                                 | 3      |
| Firmware version                                        | 3      |
| VME access through the board discrete "emergency" logic | 3      |
| Jumpers and test points                                 | 4      |
| Device 1: DCFEB JTAG                                    | 5      |
| Example: Read DCFEB UserCode                            | 5      |
| Device 2: ODMB JTAG                                     | 6      |
| Example: Read ODMB UserCode                             | 6      |
| Device 3: ODMB/DCFEB control                            | 7      |
| Bit specification DCFEB pulses command "W 3200"         | 8      |
| Information accessible via command "R 3YZC"             | 8      |
| Device 4: Configuration registers Note                  | 9<br>9 |
| Device 5: Test FIFOs                                    | 10     |
| Notes                                                   | 10     |
| Device 6: BPI Interface (PROM)                          | 11     |
| <b>Device 7: ODMB monitoring</b>                        | 12     |
| Translation into temperatures, current, and voltages    | 12     |
| Device 8: Low voltage monitoring                        | 13     |
| Device 9: System tests                                  | 14     |
| Firmware block diagram                                  | 15     |

## Front panel



### Push buttons

- HRST: Reloads firmware in PROM onto FPGA
- SRST: Resets registers/FIFOs in FW. LEDs 1-12 blink at different speeds for ~3s
- **PB1**: Sends L1A and L1A\_MATCH to all DCFEBs. Turns on LED 12

#### LEDs set in firmware

- 1: 4 Hz signal from clock for data  $\rightarrow$  DDU
- 3: 2 Hz signal from clock for data  $\rightarrow$  PC
- 5: 1 Hz signal from internal ODMB clock
- 7: Data taking: ON normal, OFF pedestal
- 9: Triggers: ON external, OFF internal
- 11: Data: ON real, OFF simulated
- 2: Bit 0 of L1A\_COUNTER
- 4: Bit 1 of L1A\_COUNTER
- 6: Bit 2 of L1A\_COUNTER
- 8: Bit 3 of L1A\_COUNTER
- 10: Bit 4 of L1A\_COUNTER
- 12: Briefly ON when a VME command is received. Also ON when **PB1** is pressed

#### LEDs set in hardware

- DDU: Signal Detected on DDU RX
- PC: Signal Detected on PC RX
- ETD: DTACK enable for discrete logic (active low)
- EJD: JTAG enable for discrete logic (active low)
- DON: DONE signal from FPGA. ON when programmed
- INIT: INIT\_B signal from FPGA (active low)
- LOCK: QPLL is locked
- ERR: Error with QPLL
- Bottom 12: Voltage monitoring

### General

### **Firmware version**

For a given firmware tag VXY-ZK:

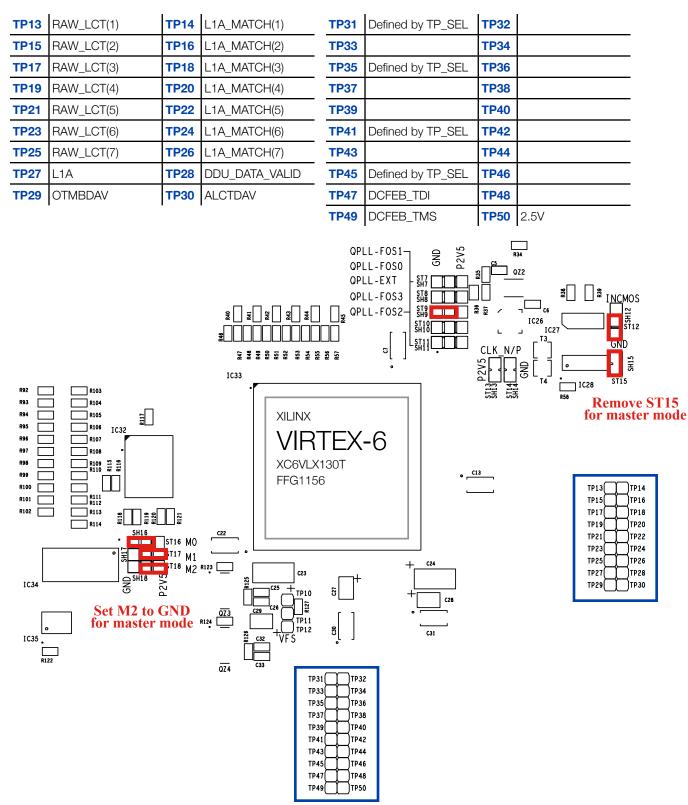
- Usercode is XYZKdbdb
- ✤ Firmware version read via "R 4200" is XYZK

#### VME access through the board discrete "emergency" logic

The FPGA may be accessed via JTAG through the discrete logic as follows

- ✤ The VME address is 0xFFFC
- The bit 0 of the data sent is TMS
- The bit 1 of the data sent is TDI

For example, to read the Usercode, starting from JTAG idle (five TMS = 1 & one TMS = 0), the commands are:


| W | FFFC | 1 | To Select-DR-Scan                    |
|---|------|---|--------------------------------------|
| W | FFFC | 1 | To Select-IR-Scan                    |
| W | FFFC | 0 | To Capture-IR                        |
| W | FFFC | 0 | To Shift-IR                          |
| W | FFFC | 0 | Shifting IR (Read UserCode IR = 3C8) |
| W | FFFC | 0 | Shifting IR                          |
| W | FFFC | 0 | Shifting IR                          |
| W | FFFC | 2 | Shifting IR                          |
| W | FFFC | 0 | Shifting IR                          |
| W | FFFC | 0 | Shifting IR                          |
| W | FFFC | 2 | Shifting IR                          |
| W | FFFC | 2 | Shifting IR                          |
| W | FFFC | 2 | Shifting IR                          |
| W | FFFC | 3 | Shifting IR and to Exit1-IR          |
| W | FFFC | 1 | To Update-IR                         |
| W | FFFC | 0 | To Run Test/Idle                     |
| W | FFFC | 1 | To Select-DR-Scan                    |
| W | FFFC | 0 | To Capture-DR                        |
| W | FFFC | 0 | Shifting DR                          |
| R | FFFC | 0 | Shifting DR (Read bit 0 of UserCode) |

Since the Usercode register is 32 bits, the last two commands should be repeated 31 more times.

#### ODMB user's manual

#### Jumpers and test points

Place the **jumpers** marked in **red** in the diagram (slave mode). The signals sent to the **test points** marked are:



# Device 1: DCFEB JTAG

#### "Y" refers to the number of bits to be shifted

| Inst | ruction | Description                                                                     |
|------|---------|---------------------------------------------------------------------------------|
| W    | 1400    | Shift Data; no TMS header; no TMS tailer                                        |
| W    | 1Y04    | Shift Data with TMS header only                                                 |
| W    | 1Y08    | Shift Data with TMS tailer only                                                 |
| W    | 1Y0C    | Shift Data with TMS header & TMS tailer                                         |
|      |         |                                                                                 |
| R    | 1014    | Read TDO register                                                               |
|      |         |                                                                                 |
| W    | 1018    | Resets JTAG protocol to IDLE state (data sent with this command is disregarded) |
|      |         |                                                                                 |
| W    | 1Y1C    | Shift Instruction register                                                      |
|      |         |                                                                                 |
| W    | 1020    | Select DCFEB, one bit per DCFEB                                                 |
| R    | 1024    | Read which DCFEB is selected                                                    |

#### Example: Read DCFEB UserCode

DCFEB registers are set and read via JTAG. The following procedure reads the 32-bit USERID of DCFEB 3:

| W | 1020 | 4   | Select DCFEB 3 (one bit per DCFEB)              |
|---|------|-----|-------------------------------------------------|
| W | 191c | 3C8 | Set instruction register to 3C8 (read UserCode) |
| W | 1F04 | 0   | Shift 16 lower bits                             |
| R | 1014 | 0   | Read last 16 shifted bits (DBDB)                |
| M | 1F08 | 0   | Shift 16 upper bits                             |
| R | 1014 | 0   | Read last 16 shifted bits (XYZK)                |

## Device 2: ODMB JTAG

#### "Y" refers to the number of bits to be shifted

| Inst | ruction | Description                                                                               |  |  |  |
|------|---------|-------------------------------------------------------------------------------------------|--|--|--|
| W    | 2400    | Shift Data; no TMS header; no TMS tailer                                                  |  |  |  |
| W    | 2Y04    | Shift Data with TMS header only                                                           |  |  |  |
| W    | 2Y08    | Shift Data with TMS tailer only                                                           |  |  |  |
| W    | 2Y0C    | Shift Data with TMS header & TMS tailer                                                   |  |  |  |
|      |         |                                                                                           |  |  |  |
| R    | 2014    | Read TDO register                                                                         |  |  |  |
|      |         |                                                                                           |  |  |  |
| W    | 2018    | <b>18</b> Resets JTAG protocol to IDLE state (data sent with this command is disregarded) |  |  |  |
|      |         |                                                                                           |  |  |  |
| W    | 2Y1C    | Shift Instruction register                                                                |  |  |  |
|      |         |                                                                                           |  |  |  |
| W    | 2020    | Change polarity of V6_JTAG_SEL                                                            |  |  |  |

### Example: Read ODMB UserCode

Read FPGA UserCode:

| W | 291C | 3C8 | Set instruction register to 3C8 (read UserCode) |
|---|------|-----|-------------------------------------------------|
| W | 2F04 | 0   | Shift 16 lower bits                             |
| R | 2014 | 0   | Read last 16 shifted bits (DBDB)                |
| W | 2F08 | 0   | Shift 16 upper bits                             |
| R | 2014 | 0   | Read last 16 shifted bits (XYZK)                |

# Device 3: ODMB/DCFEB control

| Inst | ruction | Description                                                                                         |
|------|---------|-----------------------------------------------------------------------------------------------------|
| W/R  | 3000    | $0 \rightarrow$ nominal mode, $1 \rightarrow$ calibration mode                                      |
|      |         |                                                                                                     |
| W    | 3004    | ODMB soft reset                                                                                     |
| W    | 3008    | ODMB optical reset                                                                                  |
| W    | 3010    | Reprograms all DCFEBs                                                                               |
| W    | 3014    | L1A reset and DCFEB RESYNC                                                                          |
| W/R  | 3020    | TP_SEL register (selects which signals are sent to TP31, TP35, TP41, TP45)                          |
| W/R  | 3100    | LOOPBACK: 0 $\rightarrow$ no loopback, 1 or 2 $\rightarrow$ internal loopback                       |
| W/R  | 3110    | DIFFCTRL (TX voltage swing): 0 $\rightarrow$ minimum ~100 mV, F $\rightarrow$ maximum ~1100mV       |
| R    | 3120    | Read DONE bits from DCFEBs (7 bits)                                                                 |
| R    | 3124    | Read if QPLL is locked                                                                              |
| W    | 3200    | Sends pulses to DCFEBs (see below)                                                                  |
| W/R  | 3300    | Data multiplexer: $0 \rightarrow$ real data, $1 \rightarrow$ dummy data                             |
| W/R  | 3304    | Trigger multiplexer: $0 \rightarrow$ external triggers, $1 \rightarrow$ internal triggers           |
| W/R  | 3308    | LVMB multiplexer: 0 $\rightarrow$ real LVMB, 1 $\rightarrow$ dummy LVMB                             |
| W/R  | 3400    | $0 \rightarrow$ normal, 1 $\rightarrow$ pedestal (L1A_MATCHes sent to DCFEBs for each L1A).         |
| W/R  | 3404    | $0 \rightarrow$ normal, 1 $\rightarrow$ OTMB data requested for each L1A (requires special OTMB FW) |
| W/R  | 3408    | Bit 0 $\rightarrow$ kills L1A. Bit 1 $\rightarrow$ kills L1A_MATCH                                  |
| R    | 3YZC    | Read ODMB_DATA corresponding to selection <b>YZ</b> (see below)                                     |

### Bit specification DCFEB pulses command "W 3200"

- DCFEB\_PULSE[0] Sends INJPLS signal to all DCFEBs.
- DCFEB\_PULSE[1] Sends EXTPLS signal to all DCFEBs.
- DCFEB\_PULSE[2] Sends test L1A and L1A\_MATCH to non-killed DCFEBs.
- DCFEB\_PULSE[3] Sends LCT request to OTMB.
- DCFEB\_PULSE[4] Sends external trigger request to OTMB.
- DCFEB\_PULSE[5] Sends BC0 to all DCFEBs.

#### Information accessible via command "R 3YZC"

- ▶ YZ = 3F: Least significant 16 bits of L1A\_COUNTER
- ▶ YZ = 21-29: Number of L1A\_MATCHes for given DCFEB, OTMB, ALCT
- YZ = 31-37: Gap (in number of bunch crossings) between the last LCT and L1A for given DCFEB
- YZ = 38: Gap (in number of bunch crossings) between the last L1A and OTMBDAV
- YZ = 39: Gap (in number of bunch crossings) between the last L1A and ALCTDAV
- ▶ YZ = 41-49: Number of packets stored for given DCFEB, TMB, or ALCT
- ► YZ = 4A: Number of packets sent to the DDU
- ▶ YZ = 4B: Number of packets sent to the PC
- YZ = 51-59: Number of packets shipped to DDU and PC for given DCFEB, TMB, or ALCT
- YZ = 61-67: Number of data packets received with good CRC for given DCFEB
- ▶ YZ = 71-77: Number of LCTs for given DCFEB
- YZ = 78: Number of available OTMB packets
- YZ = 79: Number of available ALCT packets
- ▶ YZ = 4F: Read number of times the QPLL lock has been lost
- ▶ YZ = 5A: Read last CCB\_CMD[5:0] + EVTRST + BXRST strobed
- ▶ YZ = 5B: Read last CCB\_DATA[7:0} strobed
- YZ = 5C: Read toggled CCB\_CAL[2:0] + CCB\_BX0 + CCB\_BXRST + CCB\_L1ARST + CCB\_L1A + CCB\_CLKEN + CCB\_EVTRST + CCB\_CMD\_STROBE + CCB\_DATA\_STROBE
- ▶ YZ = 5D: Read toggled CCB\_RSV signals

# Device 4: Configuration registers

| Inst        | ruction | Description                                                           |  |  |  |  |
|-------------|---------|-----------------------------------------------------------------------|--|--|--|--|
| W/R         | 4000    | LCT_L1A_DLY[5:0] → Set to LCT/L1A gap - 100                           |  |  |  |  |
| W/R         | 4004    | OTMB_DLY[5:0] $\rightarrow$ Set to L1A/OTMBDAV gap read with "R 338C" |  |  |  |  |
| W/R         | 400C    | ALCT_DLY[5:0] $\rightarrow$ Set to L1A/ALCTDAV gap read with "R 339C" |  |  |  |  |
| W/R         | 4010    | INJ_DLY[4:0] - Delay: 12.5*INJ_DLY [ns]                               |  |  |  |  |
| W/R         | 4014    | EXT_DLY[4:0] - Delay: 12.5*EXT_DLY [ns]                               |  |  |  |  |
| W/R         | 4018    | CALLCT_DLY[3:0] - Delay: 25*CALLCT_DLY [ns]                           |  |  |  |  |
| W/R         | 401C    | KILL[9:1] (ALCT + TMB + 7 DCFEBs)                                     |  |  |  |  |
| W/R         | 4020    | CRATEID[6:0]                                                          |  |  |  |  |
| W/R 4028 Nu |         | Number of words generated by dummy DCFEBs, OTMB, and ALCT             |  |  |  |  |
|             |         |                                                                       |  |  |  |  |
| R           | 4100    | Read ODMB unique ID <sup>1</sup>                                      |  |  |  |  |
| R           | 4200    | Read firmware version                                                 |  |  |  |  |
| R           | 4300    | Read firmware build                                                   |  |  |  |  |
| R           | 4400    | Read month/day firmware was synthesized                               |  |  |  |  |
| R           | 4500    | Read year firmware was synthesized                                    |  |  |  |  |

### Note

1. If unique ID not set, request UCSB to write it.

### Device 5: Test FIFOs

#### Z refers to FIFO: 1 → PC TX, 2 → PC RX, 3 → DDU TX, 4 → DDU RX, 5 → OTMB, 6 → ALCT

| Inst | ruction | Description                                                    |  |  |  |  |  |
|------|---------|----------------------------------------------------------------|--|--|--|--|--|
| R    | 5000    | Read one word of selected DCFEB FIFO                           |  |  |  |  |  |
| R    | 500C    | Read numbers of words stored in selected DCFEB FIFO            |  |  |  |  |  |
| W/R  | 5010    | Select DCFEB FIFO                                              |  |  |  |  |  |
| W    | 5020    | Reset DCFEB FIFOs (7 bits, one per FIFO, which are auto-reset) |  |  |  |  |  |
|      |         |                                                                |  |  |  |  |  |
| R    | 5z00    | Read one word of FIFO                                          |  |  |  |  |  |
| R    | 5z0C    | Read numbers of words stored in FIFO                           |  |  |  |  |  |
| W    | 5z20    | Reset FIFO                                                     |  |  |  |  |  |

#### **Notes**

- 1. All these FIFOs but PC TX can hold a maximum of 2,000 18-bit words (36 kb). PC TX is 4 times larger.
- 2. The OTMB, ALCT, and 7 DCFEB FIFOs store the data as it arrives in parallel to the standard data path
  - They can hold a maximum of 3 OTMB, 4 ALCT, and 2 DCFEB data packets
- 3. The **DDU TX FIFO** stores DDU packets just before being transmitted
  - They include the DDU header (4 words starting with 9, 4 starting with A), ALCT data, TMB data, DCFEB data, and trailer (4 words starting with F, 4 starting with E)
- 4. The PC TX FIFO stores DDU packets wrapped in ethernet frames just before being transmitted
  - They include the ethernet header (4 words) and trailer (4 words)
  - They need to be at least 32 words long
- 5. The **DDU** and **PC RX FIFOs** can be used for loopback tests

# Device 6: BPI Interface (PROM)

#### Important: Instruction 6000 takes ~1 second, during which Device 4 and 6 write commands are ignored

| Inst | ruction | Description                                                                         |
|------|---------|-------------------------------------------------------------------------------------|
| W    | 6000    | Write configuration registers to PROM                                               |
| W    | 6004    | Set configuration registers to retrieved values from PROM                           |
|      |         |                                                                                     |
| W    | 6020    | Reset BPI interface state machines                                                  |
| W    | 6024    | Disable parsing commands in command FIFO while filling FIFO with commands (no data) |
| W    | 6028    | Enable parsing commands in the command FIFO (no data)                               |
| W    | 602C    | Write one word to command FIFO                                                      |
|      |         |                                                                                     |
| R    | 6030    | Read one word from read-back FIFO                                                   |
| R    | 6034    | Read number of words in read-back FIFO                                              |
| R    | 6038    | Read BPI Interface Status Register                                                  |
|      |         |                                                                                     |
| R    | 603C    | Read Timer (16 LSBs)                                                                |
| R    | 6040    | Read Timer (16 MSBs)                                                                |

# Device 7: ODMB monitoring

#### Reads output of the ADC inside the FPGA

| Inst | truction | Description                                                             |  |  |  |  |  |
|------|----------|-------------------------------------------------------------------------|--|--|--|--|--|
| R    | 7000     | FPGA temperature                                                        |  |  |  |  |  |
| R    | 7100     | LV_P3V3: input to FPGA regulators                                       |  |  |  |  |  |
| R    | 7110     | P5V: input to PPIB regulator and level for 5V chips                     |  |  |  |  |  |
| R    | 7120     | IPPIB: current going to PPIB (on V2s and V3s, board temperature THERM2) |  |  |  |  |  |
| R    | 7130     | P3V6_PP: voltage level for PPIB                                         |  |  |  |  |  |
| R    | 7140     | P2V5: voltage level for FPGA and 2.5V chips                             |  |  |  |  |  |
| R    | 7150     | THERM1: board temperature close to the regulators                       |  |  |  |  |  |
| R    | 7160     | P1V0: voltage level for FPGA                                            |  |  |  |  |  |
| R    | 7170     | P5V_LVMB: voltage level for LVMB                                        |  |  |  |  |  |

### Translation into temperatures, current, and voltages

The output of the 7YZ0 commands is a 12-bit number that we call  $R_{YZ}$ . The measurement is:

- The FPGA temperature is  $T_{\rm FPGA}=\frac{R_{00}\times 503.975}{4096}-273.15~\mbox{[}^{\circ}\,C\mbox{]}$
- The PPIB current is  $\,I_{\rm PPIB} = \frac{R_{12} \times 5000}{4096} 10 \;\; [mA]$
- The temperature of the thermistors THERM1, THERM2 is given by

| R <sub>XY</sub> | 377 | 455 | 55A | 687 | 7DD | 959 | AF8 | CB5 | E87 | FFF |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| T [° C]         | 15  | 20  | 25  | 30  | 35  | 40  | 45  | 50  | 55  | 60  |

• The voltage levels are  $V_{YZ} = \frac{R_{YZ}}{2048} \times V_{YZ,Nom}$  [V], where  $V_{YZ,Nom}$  is the nominal voltage level for that

register. That is,  $V_{10, Nom} = 3.3V$ ,  $V_{13, Nom} = 3.6V$ ,  $V_{11, Nom} = V_{17, Nom} = 5V$ ,  $V_{14, Nom} = 2.5V$ , and  $V_{16, Nom} = 1V$ .

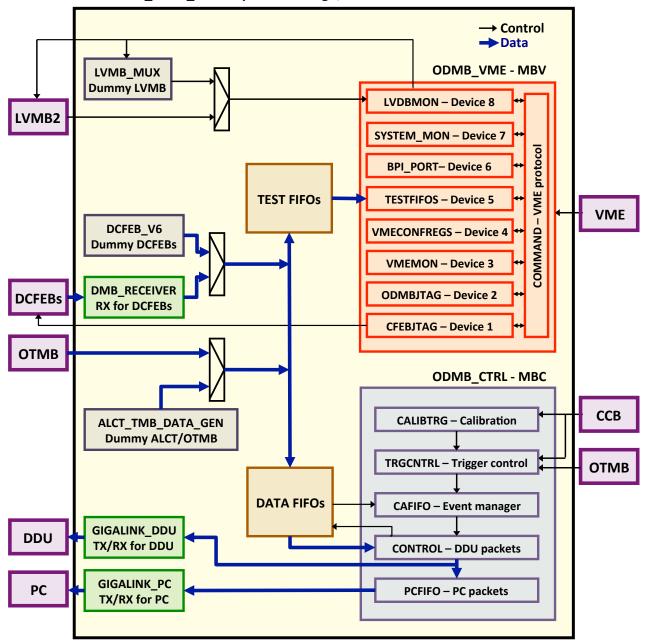
# Device 8: Low voltage monitoring

| Instruction |      | Description                                                   |  |  |  |  |  |  |  |
|-------------|------|---------------------------------------------------------------|--|--|--|--|--|--|--|
| W           | 8000 | Send control byte to ADC                                      |  |  |  |  |  |  |  |
| R           | 8004 | Read ADC                                                      |  |  |  |  |  |  |  |
|             |      |                                                               |  |  |  |  |  |  |  |
| W           | 8010 | Select DCFEBs/ALCT to be powered on (8 bits, ALCT + 7 DCFEBs) |  |  |  |  |  |  |  |
| R           | 8018 | Read which DCFEBs/ALCT are powered on                         |  |  |  |  |  |  |  |
|             |      |                                                               |  |  |  |  |  |  |  |
| W           | 8020 | Select ADC to be read, 0 to 6                                 |  |  |  |  |  |  |  |
| R           | 8024 | Read which ADC is to be read                                  |  |  |  |  |  |  |  |

### Table 1. Control-Byte Format

| BIT 7<br>(MSB) | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0<br>(LSB) |
|----------------|-------|-------|-------|-------|-------|-------|----------------|
| START          | SEL2  | SEL1  | SEL0  | RNG   | BIP   | PD1   | PD0            |

|                            | PD1     | PD0   | MODE                |               |                                                               |     |                                       |                                                    |               |                    |  |
|----------------------------|---------|-------|---------------------|---------------|---------------------------------------------------------------|-----|---------------------------------------|----------------------------------------------------|---------------|--------------------|--|
|                            | 0       | 0     | Normal o<br>mode.   | peration (alw | ration (always on), internal clock                            |     |                                       |                                                    |               |                    |  |
|                            | 0       | 1     | Normal o<br>mode.   | peration (alw | down mode (FULLPD), clock mode                                |     |                                       | INPUT RANGE RNG                                    |               | BIP                |  |
|                            | 1       | 0     | Standby<br>mode una |               |                                                               |     |                                       | 0 to +5V<br>0 to +10V                              | 0             | 0                  |  |
|                            | 1       | 1     | Full powe           |               |                                                               |     |                                       | ±5V<br>±10V                                        | 0             | 1                  |  |
|                            | SEL2    |       | SEL1                | SEL0          | CHANNEL                                                       | PD1 | PD0                                   | MODE                                               |               |                    |  |
| -                          | 0       |       |                     | 0             | 0 CH0<br>1 CH1                                                |     |                                       | Normal operation (always on), internal clock mode. |               |                    |  |
| MAX1270                    | 0       |       | 1                   | 0             | CH2<br>CH3                                                    | 0   | 0 1 Normal operation (always or mode. |                                                    | ays on), exte | n), external clock |  |
| Negative -<br>FULL SCALE - | 1       |       |                     | 0             | FULL SCALE                                                    | 1   | 0                                     | Standby power-down mode (STBYPD) mode unaffected.  |               | D), clock          |  |
|                            | 1       |       | 0<br>1<br>0<br>1    | 0             | CH5<br>VREF X 1.2207<br>CH6<br>VREF X 2.4414<br>VREF X 2.4414 | 1   | 1                                     | Full power-down mod<br>unaffected.                 | e (FULLPD),   | clock mode         |  |
| -V <sub>REF</sub> x 1.2207 |         |       | 0                   |               | V <sub>REF</sub> x 1.2207                                     | _   |                                       |                                                    |               |                    |  |
| -V <sub>REF</sub> x 2.4414 |         |       | 0                   |               | V <sub>REF</sub> x 2.4414                                     | _   |                                       |                                                    |               |                    |  |
| MAX1271                    |         |       |                     |               |                                                               |     |                                       |                                                    |               |                    |  |
| Negativa F                 | KHAWA P | edaen | ¥63-63-6            |               |                                                               | _   |                                       |                                                    |               | 13                 |  |


| Negative FilmA | FULLSCALE |    |   |    |                    |           |                           |
|----------------|-----------|----|---|----|--------------------|-----------|---------------------------|
| FULL SCALE     | SCALE (V) | _  |   |    | Negative           | ZERO      |                           |
|                |           | RN | G | ыр | VREF/2FULL SCALE   | SCALE (V) | FULL SCALE                |
|                | 0 to +5V0 | Ø  | ) | 0  | V <sub>REF</sub> — | 0         | V <sub>REF</sub> x 1.2207 |

## Device 9: System tests

| Inst | ruction | Description                                                                |
|------|---------|----------------------------------------------------------------------------|
| W    | 9000    | Test the DDU TX/RX with a given number of PRBS 27-1 sequences              |
| R    | 900C    | Read number of errors during last DDU PRBS test                            |
|      |         |                                                                            |
| W    | 9100    | Test the PC TX/RX with a given number of PRBS 27-1 sequences               |
| R    | 910C    | Read number of errors during last PC PRBS test                             |
|      |         |                                                                            |
| W    | 9200    | Check N*10000 bits from the PRBS pattern sent by the DCFEB                 |
| W/R  | 9204    | Select DCFEB fiber to perform PRBS test                                    |
| R    | 9208    | Read number of error edges during last DCFEB PRBS test                     |
| R    | 920C    | Read number of bit errors during last DCFEB PRBS test                      |
| W/R  | 9300    | Set PRBS type for DCFEB: 1 → PRBS-7, 2 → PRBS-15, 3 → PRBS-23, 4 → PRBS-31 |
|      |         |                                                                            |
| W    | 9400    | Check N*10000 bits from the PRBS pattern sent by the OTMB                  |
| R    | 9404    | Read number of enables sent by the OTMB                                    |
| R    | 9408    | Read number of good 10000 bits sent by the OTMB                            |
| R    | 940C    | Read number of bit errors during last OTMB PRBS test                       |
| W    | 9410    | Reset number of errors in OTMB counter                                     |

### Firmware block diagram

The firmware can be downloaded from http://github.com/odmb/odmb\_ucsb\_v2



ODMB\_UCSB\_V2 - Top of the design/FPGA