

ODMB user's manual

Optical DAQ MotherBoard for the ME1/1 stations of the CMS muon endcap detector

Firmware tag: V03-00

ODMB.V2, ODMB.V3, and ODMB.V4 compatible

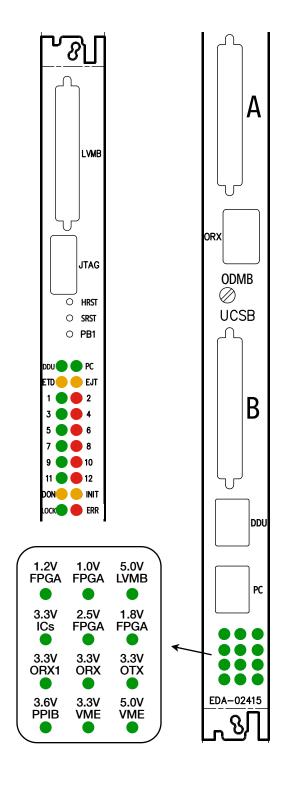

Manuel Franco Sevilla, Frank Golf, Guido Magazzù, Tom Danielson, Adam Dishaw, Jack Bradmiiller-Feld UC Santa Barbara

Table of Contents

Front panel	2
General	3
Firmware version	3
VME access through the board discrete "emergency" logic	3
Jumpers and test points	4
Device 1: DCFEB JTAG	5
Example: Read DCFEB UserCode	5
Device 2: ODMB JTAG	6
Example: Read ODMB UserCode	6
Device 3: ODMB/DCFEB control	7
Bit specification DCFEB pulses command "W 3200"	8
Information accessible via command "R 3YZC"	8
Device 4: Configuration registers	9
Note	9
Device 5: Test FIFOs	10
Notes	10
Device 6: BPI Interface (PROM)	11
Device 7: ODMB monitoring	12
Translation into temperatures, current, and voltages	12
Device 8: Low voltage monitoring	13
Device 9: System tests	14
Firmware block diagram	15

i

Front panel

Push buttons

- HRST: Reloads firmware in PROM onto FPGA
- SRST: Resets registers/FIFOs in FW. LEDs 1-12 blink at different speeds for ~3s
- PB1: Sends L1A and L1A_MATCH to all DCFEBs. Turns on LED 12

LEDs set in firmware

- 1: 4 Hz signal from clock for data → DDU
- 3: 2 Hz signal from clock for data → PC
- 5: 1 Hz signal from internal ODMB clock
- 7: Data taking: ON normal, OFF pedestal
- 9: Triggers: ON external, OFF internal
- 11: Data: ON real, OFF simulated
- 2: Bit 0 of L1A_COUNTER
- 4: Bit 1 of L1A_COUNTER
- 6: Bit 2 of L1A_COUNTER
- 8: Bit 3 of L1A_COUNTER
- 10: Bit 4 of L1A_COUNTER
- 12: Briefly ON when a VME command is received.
 Also ON when PB1 is pressed

LEDs set in hardware

- DDU: Signal Detected on DDU RX
- PC: Signal Detected on PC RX
- ETD: DTACK enable for discrete logic (active low)
- EJD: JTAG enable for discrete logic (active low)
- DON: DONE signal from FPGA. ON when programmed
- INIT: INIT_B signal from FPGA (active low)
- LOCK: QPLL is locked
- ERR: Error with QPLL
- Bottom 12: Voltage monitoring

General

Firmware version

For a given firmware tag **VXY-ZK**:

- Usercode is XYZKdbdb
- ❖ Firmware version read via "R 4200" is XYZK

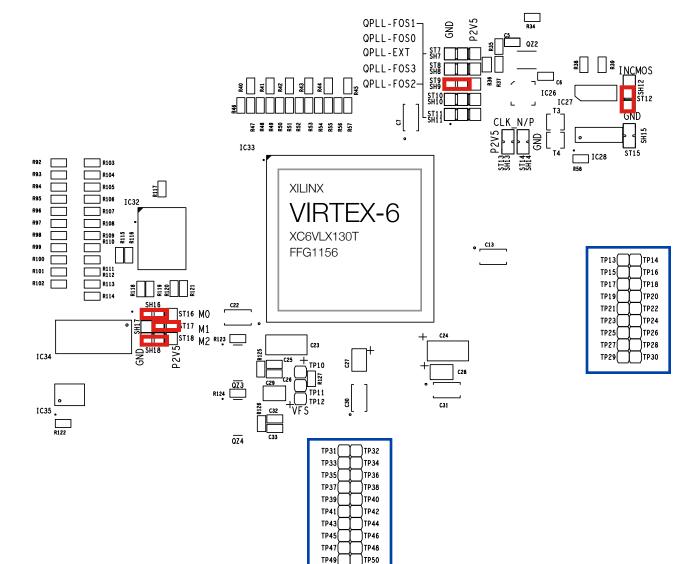
VME access through the board discrete "emergency" logic

The FPGA may be accessed via JTAG through the discrete logic as follows

- The VME address is 0xFFFC
- * The bit 0 of the data sent is TMS
- * The bit 1 of the data sent is TDI

For example, to read the Usercode, starting from JTAG idle (five TMS = 1 & one TMS = 0), the commands are:

```
W FFFC 1 To Select-DR-Scan
W FFFC 1 To Select-IR-Scan
W FFFC 0 To Capture-IR
W FFFC 0 To Shift-IR
W FFFC 0 Shifting IR (Read UserCode IR = 3C8)
W FFFC 0 Shifting IR
W FFFC 0 Shifting IR
W FFFC 2 Shifting IR
W FFFC 0 Shifting IR
W FFFC 0 Shifting IR
W FFFC 2 Shifting IR
W FFFC 2 Shifting IR
W FFFC 2 Shifting IR
W FFFC 3 Shifting IR and to Exit1-IR
W FFFC 1 To Update-IR
W FFFC 0 To Run Test/Idle
W FFFC 1 To Select-DR-Scan
W FFFC 0 To Capture-DR
W FFFC 0 Shifting DR
R FFFC 0
           Shifting DR (Read bit 0 of UserCode)
```


Since the Usercode register is 32 bits, the last two commands should be repeated 31 more times.

Jumpers and test points

Place the **jumpers** marked in **red** in the diagram. The signals sent to the **test points** marked in **blue** are:

TP12	RAW_LCT(1)	TP13	L1A_MATCH(1)
TP14	RAW_LCT(2)	TP15	L1A_MATCH(2)
TP16	RAW_LCT(3)	TP17	L1A_MATCH(3)
TP18	RAW_LCT(4)	TP19	L1A_MATCH(4)
TP20	RAW_LCT(5)	TP21	L1A_MATCH(5)
TP22	RAW_LCT(6)	TP23	L1A_MATCH(6)
TP24	RAW_LCT(7)	TP25	L1A_MATCH(7)
TP26	L1A	TP27	DDU_DATA_VALID
TP28	OTMBDAV	TP29	ALCTDAV

TP31	Defined by TP_SEL	TP32	
TP33		TP34	
TP35	Defined by TP_SEL	TP36	
TP37		TP38	
TP39		TP40	
TP41	Defined by TP_SEL	TP42	
TP43		TP44	
TP45	Defined by TP_SEL	TP46	
TP47	DCFEB_TDI	TP48	2.5V
TP49	DCFEB_TMS	TP50	

5

Device 1: DCFEB JTAG

"Y" refers to the number of bits to be shifted

Inst	ruction	Description
W	1Y00	Shift Data; no TMS header; no TMS tailer
W	1Y04	Shift Data with TMS header only
W	1Y08	Shift Data with TMS tailer only
W	1Y0C	Shift Data with TMS header & TMS tailer
R	1014	Read TDO register
W	1018	Resets JTAG protocol to IDLE state (data sent with this command is disregarded)
W	1Y1C	Shift Instruction register
W	1020	Select DCFEB, one bit per DCFEB
R	1024	Read which DCFEB is selected

Example: Read DCFEB UserCode

DCFEB registers are set and read via JTAG. The following procedure reads the 32-bit USERID of DCFEB 3:

```
W 1020 4 Select DCFEB 3 (one bit per DCFEB)

W 191c 3C8 Set instruction register to 3C8 (read UserCode)
W 1F04 0 Shift 16 lower bits
R 1014 0 Read last 16 shifted bits (DBDB)
W 1F08 0 Shift 16 upper bits
R 1014 0 Read last 16 shifted bits (XYZK)
```

Device 2: ODMB JTAG

"Y" refers to the number of bits to be shifted

Inst	ruction	Description
W	2Y00	Shift Data; no TMS header; no TMS tailer
W	2Y04	Shift Data with TMS header only
W	2Y08	Shift Data with TMS tailer only
W	2Y0C	Shift Data with TMS header & TMS tailer
R	2014	Read TDO register
W	2018	Resets JTAG protocol to IDLE state (data sent with this command is disregarded)
W	2Y1C	Shift Instruction register
W	2020	Change polarity of V6_JTAG_SEL

Example: Read ODMB UserCode

Read FPGA UserCode:

```
W 291C 3C8 Set instruction register to 3C8 (read UserCode)
W 2F04 0 Shift 16 lower bits
R 2014 0 Read last 16 shifted bits (DBDB)
W 2F08 0 Shift 16 upper bits
R 2014 0 Read last 16 shifted bits (XYZK)
```

Device 3: ODMB/DCFEB control

Insti	ruction	Description
W/R	3000	0 → nominal mode, 1 → calibration mode
W	3004	ODMB soft reset
W	3008	ODMB optical reset
W	3010	Reprograms all DCFEBs
W	3014	L1A reset and DCFEB RESYNC
W/R	3020	TP_SEL register (selects which signals are sent to TP31, TP35, TP41, TP45)
W/R	3100	LOOPBACK: 0 → no loopback, 1 or 2 → internal loopback
W/R	3110	DIFFCTRL (TX voltage swing): 0 → minimum ~100 mV, F → maximum ~1100mV
R	3120	Read DONE bits from DCFEBs (7 bits)
R	3124	Read if QPLL is locked
W	3200	Sends pulses to DCFEBs (see below)
W/R	3300	Data multiplexer: 0 → real data, 1 → dummy data
W/R	3304	Trigger multiplexer: 0 → external triggers, 1 → internal triggers
W/R	3308	LVMB multiplexer: 0 → real LVMB, 1 → dummy LVMB
W/R	3400	$0 \rightarrow$ normal, $1 \rightarrow$ pedestal (L1A_MATCHes sent to DCFEBs for each L1A).
W/R	3404	0 → normal, 1 → OTMB data requested for each L1A (requires special OTMB FW)
W/R	3408	Bit 0 → kills L1A. Bit 1 → kills L1A_MATCH
R	3YZC	Read ODMB_DATA corresponding to selection YZ (see below)

Bit specification DCFEB pulses command "W 3200"

- ► DCFEB_PULSE[0] Sends INJPLS signal to all DCFEBs.
- ► DCFEB_PULSE[1] Sends EXTPLS signal to all DCFEBs.
- ▶ DCFEB_PULSE[2] Sends test L1A and L1A_MATCH to non-killed DCFEBs.
- ▶ DCFEB_PULSE[3] Sends LCT request to OTMB.
- DCFEB_PULSE[4] Sends external trigger request to OTMB.
- ► DCFEB_PULSE[5] Sends BC0 to all DCFEBs.

Information accessible via command "R 3YZC"

- YZ = 3F: Least significant 16 bits of L1A_COUNTER
- YZ = 21-29: Number of L1A_MATCHes for given DCFEB, OTMB, ALCT
- ▶ YZ = 31-37: Gap (in number of bunch crossings) between the last LCT and L1A for given DCFEB
- ▶ YZ = 38: Gap (in number of bunch crossings) between the last L1A and OTMBDAV
- YZ = 39: Gap (in number of bunch crossings) between the last L1A and ALCTDAV
- ► YZ = 41-49: Number of packets stored for given DCFEB, TMB, or ALCT
- YZ = 4A: Number of packets sent to the DDU
- YZ = 4B: Number of packets sent to the PC
- YZ = 51-59: Number of packets shipped to DDU and PC for given DCFEB, TMB, or ALCT
- ▶ YZ = 61-67: Number of data packets received with good CRC for given DCFEB
- ► YZ = 71-77: Number of LCTs for given DCFEB
- YZ = 78: Number of available OTMB packets
- YZ = 79: Number of available ALCT packets
- YZ = 4F: Read number of times the QPLL lock has been lost
- YZ = 5A: Read last CCB CMD[5:0] + EVTRST + BXRST strobed
- YZ = 5B: Read last CCB_DATA[7:0] strobed
- YZ = 5C: Read toggled CCB_CAL[2:0] + CCB_BX0 + CCB_BXRST + CCB_L1ARST + CCB_L1A + CCB_CLKEN + CCB_EVTRST + CCB_CMD_STROBE + CCB_DATA_STROBE
- YZ = 5D: Read toggled CCB_RSV signals

Device 4: Configuration registers

Inst	ruction	Description
W/R	4000	LCT_L1A_DLY[5:0] → Set to LCT/L1A gap - 100
W/R	4004	OTMB_DLY[5:0] → Set to L1A/OTMBDAV gap read with "R 338C"
W/R	400C	ALCT_DLY[5:0] → Set to L1A/ALCTDAV gap read with "R 339C"
W/R	4010	INJ_DLY[4:0] - Delay: 12.5*INJ_DLY [ns]
W/R	4014	EXT_DLY[4:0] - Delay: 12.5*EXT_DLY [ns]
W/R	4018	CALLCT_DLY[3:0] - Delay: 25*CALLCT_DLY [ns]
W/R	401C	KILL[9:1] (ALCT + TMB + 7 DCFEBs)
W/R	4020	CRATEID[6:0]
W/R	4028	Number of words generated by dummy DCFEBs, OTMB, and ALCT
R	4100	Read ODMB unique ID ¹
R	4200	Read firmware version
R	4300	Read firmware build
R	4400	Read month/day firmware was synthesized
R	4500	Read year firmware was synthesized

Note

1. If unique ID not set, request UCSB to write it.

Device 5: Test FIFOs

Z refers to FIFO: $1 \rightarrow PC$ TX, $2 \rightarrow PC$ RX, $3 \rightarrow DDU$ TX, $4 \rightarrow DDU$ RX, $5 \rightarrow OTMB$, $6 \rightarrow ALCT$

Inst	ruction	Description
R	5000	Read one word of selected DCFEB FIFO
R	500C	Read numbers of words stored in selected DCFEB FIFO
W/R	5010	Select DCFEB FIFO
W	5020	Reset DCFEB FIFOs (7 bits, one per FIFO, which are auto-reset)
R	5 Z 00	Read one word of FIFO
R	5Z0C	Read numbers of words stored in FIFO
W	5 Z 20	Reset FIFO

Notes

- 1. All these FIFOs but PC TX can hold a maximum of 2,000 18-bit words (36 kb). PC TX is 4 times larger.
- 2. The OTMB, ALCT, and 7 DCFEB FIFOs store the data as it arrives in parallel to the standard data path
 - They can hold a maximum of 3 OTMB, 4 ALCT, and 2 DCFEB data packets
- 3. The **DDU TX FIFO** stores DDU packets just before being transmitted
 - They include the DDU header (4 words starting with 9, 4 starting with A), ALCT data, TMB data, DCFEB data, and trailer (4 words starting with F, 4 starting with E)
- 4. The PC TX FIFO stores DDU packets wrapped in ethernet frames just before being transmitted
 - They include the ethernet header (4 words) and trailer (4 words)
 - They need to be at least 32 words long
- 5. The **DDU** and **PC RX FIFOs** can be used for loopback tests

Device 6: BPI Interface (PROM)

Important: Instruction 6000 takes ~1 second, during which Device 4 and 6 write commands are ignored

Inst	ruction	Description
W	6000	Write configuration registers to PROM
W	6004	Set configuration registers to retrieved values from PROM
W	6020	Reset BPI interface state machines
W	6024	Disable parsing commands in command FIFO while filling FIFO with commands (no data)
W	6028	Enable parsing commands in the command FIFO (no data)
W	602C	Write one word to command FIFO
R	6030	Read one word from read-back FIFO
R	6034	Read number of words in read-back FIFO
R	6038	Read BPI Interface Status Register
R	603C	Read Timer (16 LSBs)
R	6040	Read Timer (16 MSBs)

12

Device 7: ODMB monitoring

Reads output of the ADC inside the FPGA

Inst	truction	Description
R	7000	FPGA temperature
R	7100	LV_P3V3: input to FPGA regulators
R	7110	P5V: input to PPIB regulator and level for 5V chips
R	7120	IPPIB: current going to PPIB (on V2s and V3s, board temperature THERM2)
R	7130	P3V6_PP: voltage level for PPIB
R	7140	P2V5: voltage level for FPGA and 2.5V chips
R	7150	THERM1: board temperature close to the regulators
R	7160	P1V0: voltage level for FPGA
R	7170	P5V_LVMB: voltage level for LVMB

Translation into temperatures, current, and voltages

The output of the 7YZ0 commands is a 12-bit number that we call RYZ. The measurement is:

• The FPGA temperature is
$$T_{FPGA}=\frac{R_{00}\times 503.975}{4096}-273.15$$
 [° C]

The PPIB current is
$$I_{PPIB} = \frac{R_{12} \times 5000}{4096} - 10 ~[mA]$$

• The temperature of the thermistors THERM1, THERM2 is given by

R _{XY}	377	455	55A	687	7DD	959	AF8	CB5	E87	FFF
T [° C]	15	20	25	30	35	40	45	50	55	60

 $\hbox{ The voltage levels are $V_{YZ}=\frac{R_{YZ}}{2048}\times V_{YZ,Nom}$ [V], where $V_{YZ,Nom}$ is the nominal voltage level for that register. That is, $V_{10,Nom}=3.3V$, $V_{13,Nom}=3.6V$, $V_{11,Nom}=V_{17,Nom}=5V$, $V_{14,Nom}=2.5V$, and $V_{16,Nom}=1V$. }$

Device 8: Low voltage monitoring

Inst	truction	Description						
W	8000	Send control byte to ADC						
R	8004	Read ADC						
W	8010	Select DCFEBs/ALCT to be powered on (8 bits, ALCT + 7 DCFEBs)						
R	8018	Read which DCFEBs/ALCT are powered on						
W	8020	Select ADC to be read, 0 to 6						
R	8024	Read which ADC is to be read						

Table 1. Control-Byte Format

BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 (LSB)
START	SEL2	SEL1	SEL0	RNG	BIP	PD1	PD0

PD1	PD0	MODE					
0	0	Normal operation (always on), internal clock mode.					
0	1	Normal operation (always on), external clock mode.					
1	0	Standby power-down mode (STBYPD), clock mode unaffected.					
1	1	Full power-down mode (FULLPD), clock mode unaffected.					

			un	affecte	a.		_,		
_	SEL2		SE	L1		SEL0		CHANNEL	
_	0		()		0		CH0	_
_	0		0		1			CH1	
_	0		1		0			CH2	
	0		7500	1	\vdash	1	\dashv	CH3	
_	1	Sí	ZERO	λγ.		0	FL	JLL SCA4E	
_	-		()-,-	H		$\overline{}$	CH5	
_	\perp		0_	1	Ħ	0	VF	REF X 1.2207	_
			0	·	旪		V _R	REF X 2 44 14	
			0	'			VR	REF X 1.2207	
	0					VR	REF x 2.4414		

INPUT RANGE	RNG	BIP
0 to +5V	0	0
0 to +10V	1	0
±5V	0	1
110\/	-1	4

_	PD1	PD0	MODE				
	0	0	Normal operation (always on), internal clock mode.				
_	0	1	Normal operation (always on), external clock mode.				
_	1	0	Standby power-down mode (STBYPD), clock mode unaffected.				
-	1	1	Full power-down mode (FULLPD), clock mode unaffected.				

IE MAX1271

IE MAX1270

Negative FULL SCALE

-V_{REF} x 1.2207 -V_{REF} x 2.4414

Negative FirmA	WGE ANDZEDNOARIF	Y SEI	ECTI	ON FQR	ΓΗΕ ΜΑΧ <u>1</u> 270		13
FULL SCALE	SCALE (V)	,	5		Negative	ZERO	FILL COALE
	INPUT RANGE	RI	NG	BIP	VREF/2FULL SCALE	SCALE (V)	FULL SCALE
_	0 to +5V0	()	0	V _{REF} —	0	V _{REF} x 1.2207

Device 9: System tests

Inst	ruction	Description
W	9000	Test the DDU TX/RX with a given number of PRBS 27-1 sequences
R	900C	Read number of errors during last DDU PRBS test
W	9100	Test the PC TX/RX with a given number of PRBS 2 ⁷ -1 sequences
R	910C	Read number of errors during last PC PRBS test
W	9200	Check N*10000 bits from the PRBS pattern sent by the DCFEB
W/R	9204	Select DCFEB fiber to perform PRBS test
R	9208	Read number of error edges during last DCFEB PRBS test
R	920C	Read number of bit errors during last DCFEB PRBS test
W/R	9300	Set PRBS type for DCFEB: 1 → PRBS-7, 2 → PRBS-15, 3 → PRBS-23, 4 → PRBS-31
W	9400	Check N*10000 bits from the PRBS pattern sent by the OTMB
R	9404	Read number of enables sent by the OTMB
R	9408	Read number of good 10000 bits sent by the OTMB
R	940C	Read number of bit errors during last OTMB PRBS test
W	9410	Reset number of errors in OTMB counter

Firmware block diagram

The firmware can be downloaded from http://github.com/odmb/odmb ucsb v2

ODMB_UCSB_V2 - Top of the design/FPGA → Control **→** Data LVMB_MUX ODMB_VME - MBV **Dummy LVMB** LVDBMON - Device 8 LVMB2 SYSTEM_MON - Device 7 COMMAND – VME protocol BPI_PORT- Device 6 **TEST FIFOs TESTFIFOS - Device 5 VME** DCFEB V6 VMECONFREGS - Device 4 **Dummy DCFEBs** VMEMON - Device 3 DMB_RECEIVER **ODMBJTAG - Device 2 DCFEBs RX for DCFEBs** CFEBJTAG - Device 1 ОТМВ ODMB_CTRL - MBC **CCB CALIBTRG** – Calibration ALCT_TMB_DATA_GEN **Dummy ALCT/OTMB** TRGCNTRL - Trigger control **OTMB DATA FIFOs CAFIFO** – Event manager GIGALINK_DDU DDU TX/RX for DDU **CONTROL - DDU packets GIGALINK PC** PC PCFIFO - PC packets TX/RX for PC