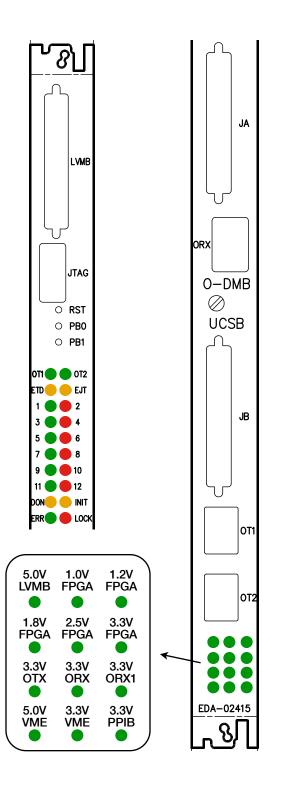


3rd December 2013

ODMB user's manual

Optical DAQ MotherBoard for the ME1/1 stations of the CMS muon endcap detector


Firmware tag: V02-00

Manuel Franco Sevilla, Frank Golf, Guido Magazzù, Tom Danielson, Adam Dishaw, Jack Bradmiiller-Feld UC Santa Barbara

Table of Contents

Front panel	2
General	3
Firmware version	3
VME access through the board discrete "emergency" logic	3
Jumpers and test points	4
Device 1: DCFEB JTAG	5
Example: Read DCFEB UserCode	5
Device 2: ODMB JTAG	6
Example: Read ODMB UserCode	6
Device 3: ODMB/DCFEB control	7
Bit specification of ODMB_CTRL and DCFEB_CTRL	7
Information accessible via command "R 3YZC"	8
Device 4: Configuration registers	9
Device 5: Test FIFOs	10
Notes	10
Device 6: BPI Interface	11
Device 7: ODMB monitoring	12
Translation into temperatures and voltages	12
Device 8: Low voltage monitoring	13
Device 9: System tests	14
Firmware block diagram	15

Front panel

Push buttons

- RST: Reloads firmware in PROM onto FPGA
- **PB0**: Resets registers/FIFOs in FW. **LEDs 1-12** blink at different speeds for ~3s
- **PB1**: Sends L1A and L1A_MATCH to all DCFEBs. Turns on LED 12

LEDs set in firmware

- 1: 4 Hz signal from clock for data \rightarrow DDU
- 3: 2 Hz signal from clock for data \rightarrow PC
- 5: 1 Hz signal from internal ODMB clock
- 7: Data taking: ON normal, OFF pedestal
- 9: Triggers: ON external, OFF internal
- 11: Data: ON real, OFF simulated
- 2: Bit 0 of L1A_COUNTER
- 4: Bit 1 of L1A_COUNTER
- 6: Bit 2 of L1A_COUNTER
- 8: Bit 3 of L1A_COUNTER
- 10: Bit 4 of L1A_COUNTER
- 12: Briefly ON when a VME command is received. Also ON when **PB1** is pressed

LEDs set in hardware

- OT1: Signal Detected on OT1 (DDU)
- OT2: Signal Detected on OT2 (PC)
- ETD: DTACK enable for discrete logic (logic low)
- EJD: JTAG enable for discrete logic (logic low)
- DON: DONE signal from FPGA. ON when programmed
- INIT: INIT_B signal from FPGA (logic low)
- ERR: Error on QPLL
- LOCK: QPLL is locked
- Bottom 12: Voltage monitoring

General

Firmware version

For a given firmware tag VXY-ZK:

- Usercode is XYZKdbdb
- Firmware version read via "R 4024" is XYZK

VME access through the board discrete "emergency" logic

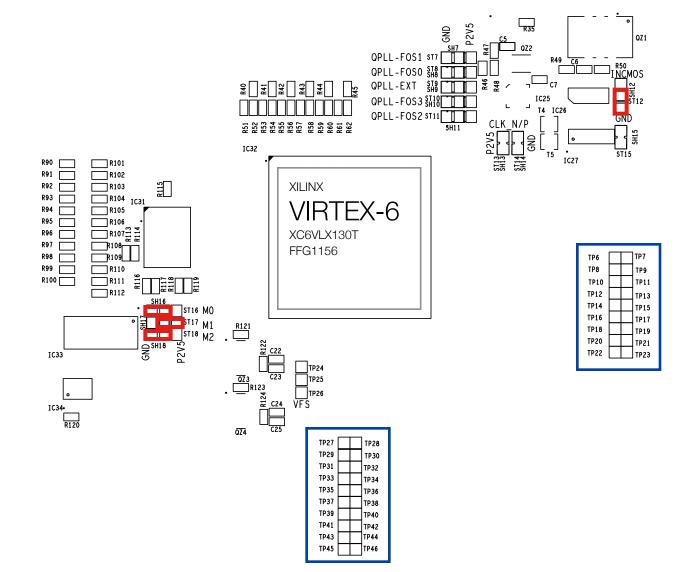
The FPGA may be accessed via JTAG through the discrete logic as follows

- ✤ The VME address is 0xFFFC
- The bit 0 of the data sent is TMS
- The bit 1 of the data sent is TDI

For example, to read the Usercode, starting from JTAG idle (five TMS = 1 & one TMS = 0), the commands are:

W	FFFC	1	To Select-DR-Scan
W	FFFC	1	To Select-IR-Scan
W	FFFC	0	To Capture-IR
W	FFFC	0	To Shift-IR
W	FFFC	0	Shifting IR (Read UserCode IR = 3C8)
W	FFFC	0	Shifting IR
W	FFFC	0	Shifting IR
W	FFFC	2	Shifting IR
W	FFFC	0	Shifting IR
W	FFFC	0	Shifting IR
W	FFFC	2	Shifting IR
W	FFFC	2	Shifting IR
W	FFFC	2	Shifting IR
W	FFFC	3	Shifting IR and to Exit1-IR
W	FFFC	1	To Update-IR
W	FFFC	0	To Run Test/Idle
W	FFFC	1	To Select-DR-Scan
W	FFFC	0	To Capture-DR
W	FFFC	0	Shifting DR
R	FFFC	0	Shifting DR (Read bit 0 of UserCode)

Since the Usercode register is 32 bits, the last two commands should be repeated 31 more times.


Jumpers and test points

Place the jumpers marked in red in the diagram: M[2:0] = 010, and ST12 grounded to use clock from CCB.

The signals sent to the test points marked in blue are:

TP6:	RAW_LCT(1)	TP7:	L1A_MATCH(1)
TP8:	RAW_LCT(2)	TP9:	L1A_MATCH(2)
TP10:	RAW_LCT(3)	TP11:	L1A_MATCH(3)
TP12:	RAW_LCT(4)	TP13:	L1A_MATCH(4)
TP14:	RAW_LCT(5)	TP15:	L1A_MATCH(5)
TP16:	RAW_LCT(6)	TP17:	L1A_MATCH(6)
TP18:	RAW_LCT(7)	TP19:	L1A_MATCH(7)
TP20:	L1A	TP21:	DDU_DATA_VALID
TP22:	OTMBDAV	TP23:	ALCTDAV

TP27:	Defined by TP_SEL	TP28:	Defined by TP_SEL
TP29:	DCFEB_DAV(1)	TP30:	DCFEB_DAV(2)
TP31:	DDU_DATA_VALID	TP32	PC_DATA_VALID
TP33:	RAWLCT(1)	TP34:	RAWLCT(2)
TP35 :	RAWLCT(3)	TP36:	RAWLCT(4)
TP37:	RAWLCT(5)	TP38:	RAWLCT(6)
TP39:	RAWLCT(7)	TP40:	LCT_ERROR
TP41:	Defined by TP_SEL	TP42:	Defined by TP_SEL

Device 1: DCFEB JTAG

"Y" refers to the number of bits to be shifted

Inst	ruction	Description
W	1400	Shift Data; no TMS header; no TMS tailer
W	1Y04	Shift Data with TMS header only
W	1Y08	Shift Data with TMS tailer only
W	1Y0C	Shift Data with TMS header & TMS tailer
R	1014	Read TDO register
W	1018	Resets JTAG protocol to IDLE state (data sent with this command is disregarded)
W	1Y1C	Shift Instruction register
W	1020	Select DCFEB, one bit per DCFEB
R	1024	Read which DCFEB is selected

Example: Read DCFEB UserCode

DCFEB registers are set and read via JTAG. The following procedure reads the 32-bit USERID of DCFEB 3:

W	1020	4	Select DCFEB 3 (one bit per DCFEB)
W	191c	3C8	Set instruction register to 3C8 (read UserCode)
W	1F04	0	Shift 16 lower bits
R	1014	0	Read last 16 shifted bits (DBDB)
M	1F08	0	Shift 16 upper bits
R	1014	0	Read last 16 shifted bits (XYZK)

Device 2: ODMB JTAG

"Y" refers to the number of bits to be shifted

Inst	truction	Description
W	2400	Shift Data; no TMS header; no TMS tailer
W	2Y04	Shift Data with TMS header only
W	2Y08	Shift Data with TMS tailer only
W	2Y0C	Shift Data with TMS header & TMS tailer
R	2014	Read TDO register
W	2018	Resets JTAG protocol to IDLE state (data sent with this command is disregarded)
W	2Y1C	Shift Instruction register

Example: Read ODMB UserCode

Read FPGA UserCode:

W	291c	3C8	Set instruction register to 3C8 (read UserCode)
M	2F04	0	Shift 16 lower bits
R	2014	0	Read last 16 shifted bits (DBDB)
M	2F08	0	Shift 16 upper bits
R	2014	0	Read last 16 shifted bits (XYZK)

Device 3: ODMB/DCFEB control

Inst	ruction	Description	
W/R	3000	ODMB_CTRL register	
W/R	3010	DCFEB_CTRL register	
W/R	3020	TP_SEL register (selects which signals are sent to TP27, TP28, TP41, TP42)	
W/R	3100	LOOPBACK: 0 \rightarrow no loopback, 1 or 2 \rightarrow internal loopback	
W/R	3110	DIFFCTRL (TX voltage swing): 0 \rightarrow minimum ~100 mV, F \rightarrow maximum ~1100mV	
R	3120	Read DONE bits from DCFEBs (7 bits)	
R	3YZC	Read ODMB_DATA corresponding to selection YZ (see below)	

Bit specification of ODMB_CTRL and DCFEB_CTRL

- ODMB_CTRL[3:0] Selects CAL_TRGEN (calibration mode).
- ODMB_CTRL[4] Selects CAL_MODE (calibration mode).
- ODMB_CTRL[5] Selects CAL_TRGSEL (calibration mode).
- ODMB_CTRL[7] Selects DCFEB data path: $0 \rightarrow$ real data, $1 \rightarrow$ dummy data.
- ODMB_CTRL[8] Resets FPGA registers/FIFOs and LEDs 1-12 blink for ~3s. Bit is auto-reset.
- ODMB_CTRL[9] Selects L1A and LCTs: $0 \rightarrow$ from CCB, $1 \rightarrow$ internally generated.
- ODMB_CTRL[10] Selects LVMB: $0 \rightarrow$ real LVMB, $1 \rightarrow$ dummy LVMB.
- ODMB_CTRL[11] Kills L1A.
- ODMB_CTRL[12] Kills L1A_MATCH.
- ODMB_CTRL[13] 0 → normal, 1 → pedestal (L1A_MATCHes sent to DCFEBs for each L1A).
- ODMB_CTRL[14] 0 \rightarrow normal, 1 \rightarrow pedestal (OTMB data requested for each L1A, needs spec. OTMB FW).
- DCFEB_CTRL[0] Reprograms the DCFEBs. Bit is auto-reset.
- DCFEB_CTRL[1] Resynchronizes the L1A_COUNTER of ODMB and DCFEBs. Bit is auto-reset.
- DCFEB_CTRL[2] Sends INJPLS signal to DCFEBs. Bit is auto-reset.
- DCFEB_CTRL[3] Sends EXTPLS signal to DCFEBs. Bit is auto-reset.
- DCFEB_CTRL[4] Sends test L1A and L1A_MATCH to all DCFEBs. Bit is auto-reset.
- DCFEB_CTRL[5] Sends LCT request to OTMB. Bit is auto-reset.
- DCFEB_CTRL[6] Sends external trigger request to OTMB. Bit is auto-reset.
- DCFEB_CTRL[7] Resets the optical transceivers. Bit is auto-reset.

Information accessible via command "R 3YZC"

- ▶ YZ = 3F: Least significant 16 bits of L1A_COUNTER
- ▶ YZ = 21-29: Number of L1A_MATCHes for given DCFEB, OTMB, ALCT
- YZ = 31-37: Gap (in number of bunch crossings) between the last LCT and L1A for given DCFEB
- YZ = 38: Gap (in number of bunch crossings) between the last L1A and OTMBDAV
- ▶ YZ = 39: Gap (in number of bunch crossings) between the last L1A and ALCTDAV
- ▶ YZ = 41-49: Number of packets stored for given DCFEB, TMB, or ALCT
- YZ = 4A: Number of packets sent to the DDU
- YZ = 4B: Number of packets sent to the PC
- ▶ YZ = 51-59: Number of packets shipped to DDU and PC for given DCFEB, TMB, or ALCT
- YZ = 61-67: Number of data packets received with good CRC for given DCFEB
- ▶ YZ = 71-77: Number of LCTs for given DCFEB
- YZ = 78: Number of available OTMB packets
- YZ = 79: Number of available ALCT packets
- ▶ YZ = 5A: Read last CCB_CMD[5:0] + EVTRST + BXRST strobed
- ▶ YZ = 5B: Read last CCB_DATA[7:0] strobed
- YZ = 5C: Read toggled CCB_CAL[2:0] + CCB_BX0 + CCB_BXRST + CCB_L1ARST + CCB_L1A + CCB_CLKEN + CCB_EVTRST + CCB_CMD_STROBE + CCB_DATA_STROBE
- YZ = 5D: Read toggled CCB_RSV signals

Device 4: Configuration registers

Inst	ruction	Description
W/R	4000	LCT_L1A_DLY[5:0] → Set to LCT/L1A gap - 100
W/R	4004	OTMB_DLY[4:0] → Set to L1A/OTMBDAV gap - 1
W/R	4008	PUSH_DLY[4:0]
W/R	400C	ALCT_DLY[4:0] → Set to L1A/ALCTDAV gap - 1
W/R	4010	INJ_DLY[4:0] - Delay: 12.5*INJ_DLY [ns]
W/R	4014	EXT_DLY[4:0] - Delay: 12.5*EXT_DLY [ns]
W/R	4018	CALLCT_DLY[3:0] - Delay: 25*CALLCT_DLY [ns]
W/R	401C	KILL[9:1] (ALCT + TMB + 7 DCFEBs)
W/R	4020	CRATEID[6:0]
R	4024	Read firmware version
W/R	4028	Number of words generated by dummy DCFEBs, OTMB, and ALCT

Device 5: Test FIFOs

Z refers to FIFO: 1 → PC TX, 2 → PC RX, 3 → DDU TX, 4 → DDU RX, 5 → OTMB, 6 → ALCT

Inst	ruction	Description
R	5000	Read one word of selected DCFEB FIFO
R	500C	Read numbers of words stored in selected DCFEB FIFO
W/R	5010	Select DCFEB FIFO
W	5020	Reset DCFEB FIFOs (7 bits, one per FIFO, which are auto-reset)
R	5z00	Read one word of FIFO
R	5z0C	Read numbers of words stored in FIFO
W	5z20	Reset FIFO

Notes

- 1. All these FIFOs can hold a maximum of 2,000 18-bit words (36 kb)
- 2. The OTMB, ALCT, and 7 DCFEB FIFOs store the data as it arrives in parallel to the standard data path
 - They can hold a maximum of 3 OTMB, 4 ALCT, and 2 DCFEB data packets
- 3. The **DDU TX FIFO** stores DDU packets just before being transmitted
 - They include the DDU header (4 words starting with 9, 4 starting with A), ALCT data, TMB data, DCFEB data, and trailer (4 words starting with F, 4 starting with E)
- 4. The PC TX FIFO stores DDU packets wrapped in ethernet frames just before being transmitted
 - They include the ethernet header (4 words) and trailer (4 words)
 - They need to be at least 32 words long
- 5. The **DDU** and **PC RX FIFOs** can be used for loopback tests

Device 6: BPI Interface (PROM)

Important: Instruction 6000 takes ~1 second, during which Device 4 and 6 write commands are ignored

Inst	ruction	Description
W	6000	Write configuration registers to PROM
W	6004	Set configuration registers to retrieved values from PROM
W	6020	Reset BPI interface state machines
W	6024	Disable parsing commands in command FIFO while filling FIFO with commands (no data)
W	6028	Enable parsing commands in the command FIFO (no data)
W	602C	Write one word to command FIFO
R	6030	Read one word from read-back FIFO
R	6034	Read number of words in read-back FIFO
R	6038	Read BPI Interface Status Register
R	603C	Read Timer (16 LSBs)
R	6040	Read Timer (16 MSBs)

Device 7: ODMB monitoring

Reads output of the ADC inside the FPGA

Instruction		Description			
R	7000	FPGA temperature			
R	7100	LV_P3V3: input to FPGA regulators			
R	7110	P5V: input to PPIB regulator and level for 5V chips			
R	7120	THERM2: board temperature at the center-top			
R	7130	P3V3_PP: voltage level for PPIB			
R	7140	P2V5: voltage level for FPGA and 2.5V chips			
R	7150	THERM1: board temperature close to the LVMB connector			
R	7160	P1V0: voltage level for FPGA			
R	7170	P5V_LVMB: voltage level for LVMB			

Translation into temperatures and voltages

The output of the 7YZ0 commands is a 12-bit number that we call R_{YZ} . The measurement is:

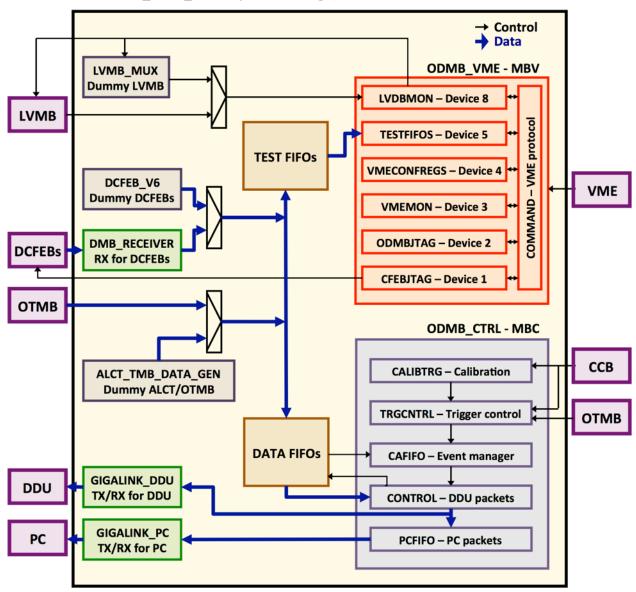
- The FPGA temperature is $\,T_{\rm FPGA}=\frac{R_{00}\times503.975}{4096}-273.15~\,[^\circ\,C]$
- The temperature of the thermistors THERM1, THERM2 is given by

R _{XY}	377	455	55A	687	7DD	959	AF8	CB5	E87	FFF
T [° C]	15	20	25	30	35	40	45	50	55	60

• The voltage levels are $V_{YZ} = \frac{R_{YZ}}{2048} \times V_{YZ,Nom}$ [V], where $V_{YZ,Nom}$ is the nominal voltage level for that

register. That is, $V_{10, Nom} = V_{13, Nom} = 3.3V$, $V_{11, Nom} = V_{17, Nom} = 5V$, $V_{14, Nom} = 2.5V$, and $V_{16, Nom} = 1V$.

Device 8: Low voltage monitoring


Instruction		Description			
W	8000	Send control byte to ADC			
R	8004	Read ADC			
W	8010	Select DCFEBs/ALCT to be powered on (8 bits, ALCT + 7 DCFEBs)			
R	8018	Read which DCFEBs/ALCT are powered on			
W	8020	Select ADC to be read, 0 to 6			
R	8024	Read which ADC is to be read			

Device 9: System tests

Inst	ruction	Description
W	9000	Test the DDU TX/RX with a given number of PRBS 27-1 sequences
R	900C	Read number of errors during last DDU PRBS test
W	9100	Test the PC TX/RX with a given number of PRBS 27-1 sequences
R	910C	Read number of errors during last PC PRBS test
W	9200	Check N*10000 bits from the PRBS pattern sent by the DCFEB
W/R	9204	Select DCFEB fiber to perform PRBS test
R	9208	Read number of error edges during last DCFEB PRBS test
R	920C	Read number of bit errors during last DCFEB PRBS test
W/R	9300	Set PRBS type for DCFEB: 1 → PRBS-7, 2 → PRBS-15, 3 → PRBS-23, 4 → PRBS-31
W	9400	Check N*10000 bits from the PRBS pattern sent by the OTMB
R	9404	Read number of enables sent by the OTMB
R	9408	Read number of good 10000 bits sent by the OTMB
R	940C	Read number of bit errors during last OTMB PRBS test
W	9410	Reset number of errors in OTMB counter

Firmware block diagram

The firmware can be downloaded from http://github.com/odmb/odmb_ucsb_v2

ODMB_UCSB_V2 - Top of the design/FPGA