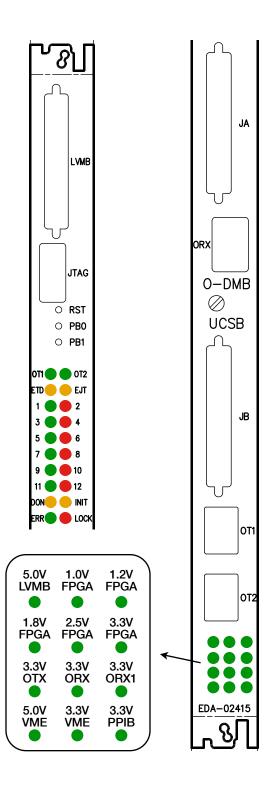


7th August 2013

ODMB user's manual

Optical DAQ MotherBoard for the ME1/1 stations of the CMS muon endcap detector


Firmware tag: V01-00

Manuel Franco Sevilla, Frank Golf, Guido Magazzù, Tom Danielson UC Santa Barbara

Table of Contents

Front panel	2
General	3
Firmware version	3
VME access through the board discrete "emergency" logic	3
Jumpers and test points	4
Device 1: DCFEB JTAG	5
Example: Read DCFEB UserCode	5
Device 2: ODMB JTAG	6
Example: Read ODMB UserCode	6
Device 3: ODMB/DCFEB control	7
Bit specification of ODMB_CTRL and DCFEB_CTRL	7
Information accessible via command "R 3YZC"	8
Device 4: Configuration registers	9
Device 5: Test FIFOs	10
Notes	10
Device 8: Low voltage monitoring	11
Firmware block diagram	12

Front panel

Push buttons

- RST: Reloads firmware in PROM onto FPGA
- **PB0**: Resets registers/FIFOs in FW. **LEDs 1-12** blink at different speeds for ~3s
- **PB1**: Sends L1A and L1A_MATCH to all DCFEBs. Turns on LED 12

LEDs set in firmware

- 1: 4 Hz signal from clock for data \rightarrow DDU
- 3: 2 Hz signal from clock for data \rightarrow PC
- 5: 1 Hz signal from internal ODMB clock
- 7: Internal PLL is locked
- 9: L1A and LCTs from CCB are selected
- 11: Path for real DCFEB data is selected
- 2: Bit 0 of L1A_COUNTER
- 4: Bit 1 of L1A_COUNTER
- 6: Bit 2 of L1A_COUNTER
- 8: Bit 3 of L1A_COUNTER
- 10: Bit 4 of L1A_COUNTER
- 12: Briefly ON when a VME command is received. Also ON when PB1 is pressed

LEDs set in hardware

- OT1: SD signal from OT1
- OT2: SD signal from OT2
- ETD: DTACK enable for discrete logic (logic low)
- EJD: JTAG enable for discrete logic (logic low)
- DON: DONE signal from FPGA. ON when programmed
- INIT: INIT_B signal from FPGA (logic low)
- ERR: Error on QPLL
- LOCK: QPLL is locked
- Bottom 12: Voltage monitoring

General

Firmware version

For a given firmware tag VXY-ZK:

- Usercode is XYZKdbdb
- ✤ FW_VERSION read via "R 4424" is XYZK

VME access through the board discrete "emergency" logic

The FPGA may be accessed via JTAG through the discrete logic as follows

- ✤ The VME address is 0xFFFC
- The bit 0 of the data sent is TMS
- The bit 1 of the data sent is TDI

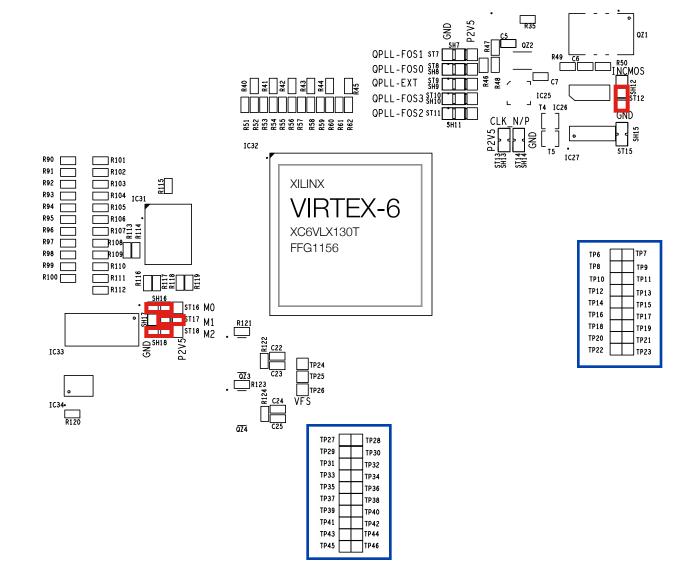
For example, to read the Usercode, starting from JTAG idle (five TMS = 1 & one TMS = 0), the commands are:

W	FFFC	1	To Select-DR-Scan
W	FFFC	1	To Select-IR-Scan
W	FFFC	0	To Capture-IR
W	FFFC	0	To Shift-IR
W	FFFC	0	Shifting IR (Read UserCode IR = 3C8)
W	FFFC	0	Shifting IR
W	FFFC	0	Shifting IR
W	FFFC	2	Shifting IR
W	FFFC	0	Shifting IR
W	FFFC	0	Shifting IR
W	FFFC	2	Shifting IR
W	FFFC	2	Shifting IR
W	FFFC	2	Shifting IR
W	FFFC	3	Shifting IR and to Exit1-IR
W	FFFC	1	To Update-IR
W	FFFC	0	To Run Test/Idle
W	FFFC	1	To Select-DR-Scan
W	FFFC	0	To Capture-DR
W	FFFC	0	Shifting DR
R	FFFC	0	Shifting DR (Read bit 0 of UserCode)

Since the Usercode register is 32 bits, the last two commands should be repeated 31 more times.

Jumpers and test points

.


Place the jumpers marked in red in the diagram: M[2:0] = 010, and ST12 grounded to use clock from CCB.

The signals sent to the test points marked in blue are: .

.

TP6:	RAW_LCT(1)	TP7:	L1A_MATCH(1)
TP8:	RAW_LCT(2)	TP9:	L1A_MATCH(2)
TP10:	RAW_LCT(3)	TP11:	L1A_MATCH(3)
TP12:	RAW_LCT(4)	TP13:	L1A_MATCH(4)
TP14:	RAW_LCT(5)	TP15:	L1A_MATCH(5)
TP16:	RAW_LCT(6)	TP17:	L1A_MATCH(6)
TP18:	RAW_LCT(7)	TP19:	L1A_MATCH(7)
TP20:	L1A	TP21:	DDU_DATA_VALID
TP22:	OTMBDAV	TP23:	ALCTDAV

TP27:	Defined by TP_SEL	TP28:	Defined by TP_SEL
TP29:	DCFEB_DAV(1)	TP30:	DCFEB_DAV(2)
TP31:	DDU_DATA_VALID	TP32	PC_DATA_VALID
TP33:	RAWLCT(1)	TP34:	RAWLCT(2)
TP35 :	RAWLCT(3)	TP36:	RAWLCT(4)
TP37:	RAWLCT(5)	TP38:	RAWLCT(6)
TP39:	RAWLCT(7)	TP40:	LCT_ERROR
TP41:	Defined by TP_SEL	TP42:	Defined by TP_SEL

Device 1: DCFEB JTAG

"Y" refers to the number of bits to be shifted

Inst	truction	Description
W	1400	Shift Data; no TMS header; no TMS tailer
W	1Y04	Shift Data with TMS header only
W	1Y08	Shift Data with TMS tailer only
W	1Y0C	Shift Data with TMS header & TMS tailer
R	1Y14	Read TDO register
W	1018	Resets JTAG protocol to IDLE state (data sent with this command is disregarded)
W	1Y1C	Shift Instruction register
W	1020	Select DCFEB, one bit per DCFEB
R	1024	Read which DCFEB is selected

Example: Read DCFEB UserCode

DCFEB registers are set and read via JTAG. The following procedure reads the 32-bit USERID of DCFEB 3:

W	1020	4	Select DCFEB 3 (one bit per DCFEB)
W	191c	3C8	Set instruction register to 3C8 (read UserCode)
W	1F04	0	Shift 16 lower bits
R	1F14	0	Read last 16 shifted bits (DBDB)
W	1F14	0	Shift 16 upper bits
R	1F14	0	Read last 16 shifted bits (XYZK)

Device 2: ODMB JTAG

"Y" refers to the number of bits to be shifted

Inst	ruction	Description
W	2400	Shift Data; no TMS header; no TMS tailer
W	2Y04	Shift Data with TMS header only
W	2Y08	Shift Data with TMS tailer only
W	2Y0C	Shift Data with TMS header & TMS tailer
R	2Y14	Read TDO register
W	2018	Resets JTAG protocol to IDLE state (data sent with this command is disregarded)
W	2Y1C	Shift Instruction register
W	2020	Set V6_JTAG_SEL: 0 \rightarrow discrete logic JTAG, 1 \rightarrow ODMB JTAG
R	2024	Read V6_JTAG_SEL

Example: Read ODMB UserCode

Read FPGA UserCode:

W	2020	1	Set V6_JTAG_SEL to 1 (ODMB JTAG)
W	291c	3C8	Set instruction register to 3C8 (read UserCode)
W	2F04	0	Shift 16 lower bits
R	2F14	0	Read last 16 shifted bits (DBDB)
W	2F14	0	Shift 16 upper bits
R	2F14	0	Read last 16 shifted bits (XYZK)
W	2020	0	Set V6_JTAG_SEL back to 0 (discrete logic JTAG)

Device 3: ODMB/DCFEB control

Inst	ruction	Description
W	3000	Set ODMB_CTRL register
R	3004	Read ODMB_CTRL register
W	3010	Set DCFEB_CTRL register
R	3014	Read DCFEB_CTRL register
W	3020	Set TP_SEL register (selects which signals are sent to TP27, TP28, TP41, TP42)
R	3024	Read TP_SEL register
W	3100	Set LOOPBACK: $0 \rightarrow$ no loopback, 1 or $2 \rightarrow$ internal loopback
R	3104	Read LOOPBACK
W	3110	Set DIFFCTRL (TX voltage swing): 0 \rightarrow minimum ~100 mV, F \rightarrow maximum ~1100mV
R	3114	Read DIFFCTRL
R	3YZC	Read ODMB_DATA corresponding to selection \mathbf{YZ} (see below)

Bit specification of ODMB_CTRL and DCFEB_CTRL

- ODMB_CTRL[3:0] Selects CAL_TRGEN (calibration mode).
- ODMB_CTRL[4] Selects CAL_MODE (calibration mode).
- ODMB_CTRL[5] Selects CAL_TRGSEL (calibration mode).
- ODMB_CTRL[7] Selects DCFEB data path: $0 \rightarrow$ real data, $1 \rightarrow$ dummy data.
- ODMB_CTRL[8] Resets FPGA registers/FIFOs and LEDs 1-12 blink for ~3s. Bit is auto-reset.
- ODMB_CTRL[9] Selects L1A and LCTs: 0 \rightarrow from CCB, 1 \rightarrow internally generated.
- ODMB_CTRL[10] Selects LVMB: 0 \rightarrow real LVMB, 1 \rightarrow dummy LVMB.
- ODMB_CTRL[11] Kills L1A.
- ODMB_CTRL[12] Kills L1A_MATCH.
- DCFEB CTRL[0] Reprograms the DCFEBs. Bit is auto-reset.
- DCFEB_CTRL[1] Resynchronizes the L1A_COUNTER of ODMB and DCFEBs. Bit is auto-reset.
- DCFEB_CTRL[2] Sends INJPLS signal to DCFEBs. Bit is auto-reset.
- DCFEB_CTRL[3] Sends EXTPLS signal to DCFEBs. Bit is auto-reset.
- DCFEB_CTRL[4] Sends test L1A and L1A_MATCH to all DCFEBs. Bit is auto-reset.
- DCFEB_CTRL[5] Sends LCT request to OTMB.
- DCFEB_CTRL[6] Sends external trigger request to OTMB.
- DCFEB_CTRL[7] Resets the optical transceivers.

Information accessible via command "R 3YZC"

- YZ = 3A: Most significant 8 bits of L1A_COUNTER
- ▶ YZ = 3B: Least significant 16 bits of L1A_COUNTER
- ▶ YZ = 21-29: Number of L1A_MATCHes for given DCFEB, OTMB, ALCT
- YZ = 31-37: Gap (in number of bunch crossings) between the last LCT and L1A for given DCFEB
- ▶ YZ = 41-49: Number of packets stored for given DCFEB, TMB, or ALCT
- ▶ YZ = 4A: Number of packets sent to the DDU
- YZ = 4B: Number of packets sent to the PC
- ▶ YZ = 51-59: Number of packets shipped to DDU and PC for given DCFEB, TMB, or ALCT
- ▶ YZ = 61-67: Number of data packets received with good CRC for given DCFEB
- ▶ YZ = 71-77: Number of LCTs for given DCFEB
- YZ = 78: Number of available OTMB packets
- YZ = 79: Number of available ALCT packets

Device 4: Configuration registers

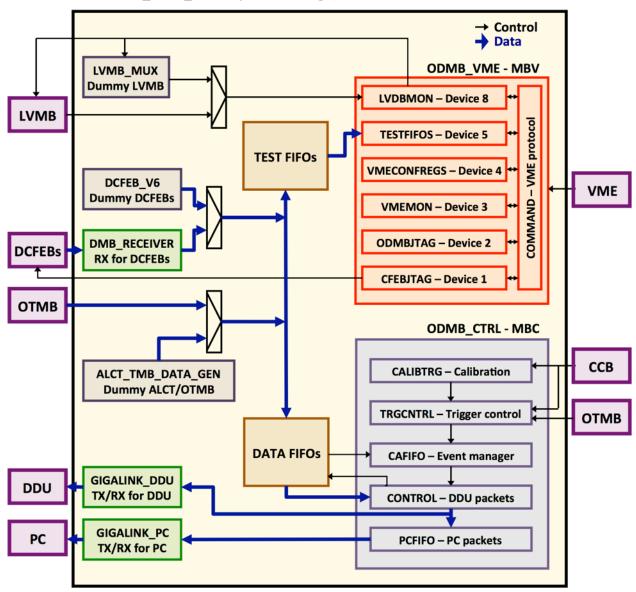
Inst	ruction	Description
W	4000	Set LCT_L1A_DLY[5:0] - Total delay: 2400 + 25*DCT_L1A_DLY [ns]
W	4004	Set OTMB_DLY[4:0]
W	4008	Set PUSH_DLY[4:0]
W	400C	Set ALCT_DLY[4:0]
W	4010	Set INJ_DLY[4:0] - Delay: 12.5*INJ_DLY [ns]
W	4014	Set EXT_DLY[4:0] - Delay: 12.5*EXT_DLY [ns]
W	4018	Set CALLCT_DLY[3:0] - Delay: 25*CALLCT_DLY [ns]
W	401C	Set KILL[9:1] (ALCT + TMB + 7 DCFEBs)
W	4020	Set CRATEID[6:0]
R	4400	Read LCT_L1A_DLY
R	4404	Read TMB_DLY
R	4408	Read PUSH_DLY
R	440C	Read ALCT_DLY
R	4410	Read INJ_DLY
R	4414	Read EXT_DLY
R	4418	Read CALLCT_DLY
R	441C	Read KILL
R	4420	Read CRATEID
R	4424	Read FW_VERSION

Device 5: Test FIFOs

Z refers to FIFO: 1 → PC TX, 2 → PC RX, 3 → DDU TX, 4 → DDU RX, 5 → OTMB, 6 → ALCT

Inst	ruction	Description
R	5000	Read one word of selected DCFEB FIFO
R	500C	Read numbers of words stored in selected DCFEB FIFO
W	5010	Select DCFEB FIFO
R	5014	Read which DCFEB FIFO is selected
W	5020	Reset DCFEB FIFOs (7 bits, one per FIFO, which are auto-reset)
R	5z00	Read one word of FIFO
R	5z0C	Read numbers of words stored in FIFO
W	5 z 20	Reset FIFO

Notes


- 1. All these FIFOs can hold a maximum of 2,000 18-bit words (36 kb)
- 2. The OTMB, ALCT, and 7 DCFEB FIFOs store the data as it arrives in parallel to the standard data path
 - They can hold a maximum of 3 OTMB, 4 ALCT, and 2 DCFEB data packets
- 3. The **DDU TX FIFO** stores DDU packets just before being transmitted
 - They include the DDU header (4 words starting with 9, 4 starting with A), ALCT data, TMB data, DCFEB data, and trailer (4 words starting with F, 4 starting with E)
- 4. The PC TX FIFO stores DDU packets wrapped in ethernet frames just before being transmitted
 - They include the ethernet header (4 words) and trailer (4 words)
 - They need to be at least 32 words long
- 5. The **DDU** and **PC RX FIFOs** can be used for loopback tests

Device 8: Low voltage monitoring

Inst	ruction	Description	
W	8000	Send control byte to ADC	
R	8004	Read ADC	
W	8010	Select DCFEBs/ALCT to be powered on (8 bits, ALCT + 7 DCFEBs)	
R	8014	Read which DCFEBs/ALCT are powered on	
W	8020	Select ADC to be read	
R	8024	Read which ADC is to be read	

Firmware block diagram

The firmware can be downloaded from http://github.com/odmb/odmb_ucsb_v2

ODMB_UCSB_V2 - Top of the design/FPGA